by removal of one CO. Low-temperature accumulation of axial- 13 CO-Os₃(CO)₁₁(13 CO) is consistent with the IR spectral characterization of the accumulated Os₃(CO)₁₁ precursor as an axially vacant fragment. The low-temperature reaction of axially vacant Os₃(CO)₁₁ with 13 CO to yield axial- 13 CO-Os₃(CO)₁₁(13 CO) has provided an opportunity to characterize the two possible isomers of Os₃(CO)₁₁(13 CO).

Electronic factors are likely to control the thermodynamic preference for an axial vacancy in Os₃(CO)₁₁. The axial Os-CO bonds in Os₃(CO)₁₂⁴⁹ are lengthened relative to the equatorial Os-CO bonds due to a greater competition between two axial CO's than between an equatorial CO and a trans-Os atom for back donation of electron density from the t_{2g} orbitals of a given Os. This trend in Os-CO bonding extends to the crystallographically characterized axially substituted Os₃(CO)₁₁(NCMe),⁵⁰ where, in addition, the axial Os-CO distance trans to the MeCN is the shortest metal-ligand bond distance in the structure. The trans axial CO receives most of the back-donated electron density from the Os orbital, since it is in direct competition with the MeCN, which is a good σ -donor but a poor π -acceptor. For sterically nondemanding entering groups, substitution of CO by weak π acceptor ligands (CNMe, NCMe, C5H5N)43 favors an axial coordination site trans to CO rather than an equatorial site trans

to an Os-Os bond, thus maximizing π bonding with the remaining CO ligands. A "vacancy", having no π -acceptor properties, is similarly expected to reside in an axial site in photogenerated $Os_3(CO)_{11}$, as observed. The $Os_3(CO)_{11}(N_2)$ complex is axially substituted in accord with this trend. The strong π -acid C_2H_4 , however, prefers to coordinate equatorially.

Acknowledgment. We thank the National Science Foundation for support of this research.

Registry No. Os₃(CO)₁₂, 15696-40-9; Os₃(CO)₁₁, 108345-48-8; Os₃-(CO)₁₁(PPh₃), 30173-88-7; Os₃(CO)₁₁(P(OMe)₃), 66098-55-3; Os-(CO)₄(PPh₃), 21192-24-5; Os₃(CO)₁₁(N₂), 108345-49-9; Os₃(CO)₁₁-(C₂H₄), 65772-73-8; Os₃(CO)₁₁(2-MeTHF), 108345-50-2; Os₃(CO)₁₁-(C₅H₁₀), 108345-51-3; H₂Os₃(CO)₁₀, 41766-80-7; H₂Os₃(CO)₁₁, 56398-24-4; Os₃(CO)₁₁(1³CO), 15696-40-9; axial-Os₃(CO)₁₁(1³CO), 73346-54-0; equitorial-Os₃(CO)₁₁(1³CO), 73295-94-0; P(OMe)₃, 121-45-9; PPh₃, 603-35-0; 2-MeTHF, 96-47-9; 1³CO, 1641-69-6; CO, 630-08-0; C₂H₄, 74-85-1; N₂, 7727-37-9; H₂, 1333-74-0; 1-pentene, 109-67-1.

Supplementary Material Available: IR and UV-vis spectral data for relevant complexes to supplement Table I and figures showing IR spectral data for the thermal reactions of photogenerated $Os_3(CO)_{11}$ with PPh₃ and with H₂ (6 pages). Ordering information is given on any current masthead page.

Wavelength-, Medium-, and Temperature-Dependent Competition between Photosubstitution and Photofragmentation in $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$: Detection and Characterization of Coordinatively Unsaturated $M_3(CO)_{11}$ Complexes

James G. Bentsen and Mark S. Wrighton*

Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Received July 8, 1986

Abstract: Irradiation of 0.1 mM Ru₃(CO)₁₂ (λ = 313 nm) or 0.02 mM Fe₃(CO)₁₂ (λ = 366 nm) in a methylcyclohexane or 2-methyltetrahydrofuran (2-MeTHF) glass at 90 K yields loss of one CO as the only IR detectable photoreaction to yield products formulated as M₃(CO)₁₁ or M₃(CO)₁₁(2-MeTHF), respectively. An initially observed axially vacant form of Ru₃(CO)₁₁ (II) having no bridging CO's rearranges at 90 K to an axially vacant form (III), having at least one bridging CO, also adopted by Fe₃(CO)₁₁ in an alkane glass. An initially observed, equatorially substituted form of Ru₃(CO)₁₁(2-MeTHF) (I') rearranges at 90 K to III or a 2-MeTHF adduct of III. I' is extremely photosensitive with respect to further substitution by 2-MeTHF for up to three CO ligands. Ru₃(CO)₁₁ (III) reacts with N₂ or ¹³CO to yield Ru₃(CO)₁₁(N₂) or axial-¹³CO-Ru₃(CO)₁₁(¹³CO) complexes, respectively. $Ru_3(CO)_{11}$ and $Fe_3(CO)_{11}$ react with C_2H_4 to yield $M_3(CO)_{11}(C_2H_4)$ complexes. $M_3(CO)_{11}$ (III) reacts with PPh₃ to yield $Ru_3(CO)_{11}(PPh_3)$ at 298 K and $Fe_3(CO)_{11}(PPh_3)$ at 195 K. Long wavelength excitation of $Ru_3(CO)_{12}$ $(\lambda = 366 \text{ nm}) \text{ or } \text{Fe}_3(\text{CO})_{12} (\lambda = 436 \text{ nm})$ yields negligible photochemistry in alkane or 2-MeTHF glasses but yields associative photosubstitution of C_2H_4 , C_5H_{10} , and ¹³CO but not N_2 or 2-MeTHF for CO at 90 K. Long wavelength ($\lambda > 540$ nm) excitation of Fe₃(CO)₁₂ yields no photochemistry at 90 K but gives asymmetric fragmentation in C₂H₄-containing alkane solutions at 298 K to yield 1 equiv each of Fe(CO)₅, Fe(CO)₄(C₂H₄), and Fe(CO)₃(C₂H₄)₂; competitive photosubstitution occurs in the presence of PPh₃ to yield Fe₃(CO)₁₁(PPh₃). At 195 K, the Fe₃(CO)₁₁L/Fe(CO)_{5-n}(L)_n (L = C₂H₄, PPh₃; n = 0-2) product ratios increase with decreasing irradiation wavelength. Long wavelength ($\lambda > 420$ nm) irradiation of 0.2 mM Ru₃(CO)₁₂ in 195 K alkane solutions containing excess L = CO or C₂H₄ initially yields 1 equiv each of Ru(CO)₄L and Ru₂(CO)₈L; $Ru_2(CO)_8(C_2H_4)$ fragments at 195 K to yield 2 more equiv of $Ru(CO)_4(C_2H_4)$. Long wavelength irradiation of $Ru_3(CO)_{12}$ in PPh3-containing solutions at 195 K yields conversion to a CO-bridged product which reacts thermally at 195 K to form Ru₃(CO)₁₁(PPh₃), in competition with Ru₃(CO)₁₂ regeneration; Ru(CO)₄(PPh₃) and Ru(CO)₃(PPh₃)₂ are only observed as secondary photoproducts at 195 K. The low-temperature photochemistry of Ru₃(CO)₁₂ is discussed in terms of a wavelength-dependent competition between dissociative loss of equatorial CO from higher energy excitation and generation of a nonradical, reactive isomer of Ru₃(CO)₁₂ from long wavelength excitation. Implications of the new results for the photocatalyzed isomerization of 1-pentene to cis- and trans-2-pentene by $M_3(CO)_{12}$ (M = Ru, Fe) precursors are discussed.

This article reports results concerning the photochemical generation of reactive intermediates from visible and near-UV irradiation of $M_3(CO)_{12}$ (M = Fe, Ru) in low-temperature fluid solutions and in rigid organic solvents. A wavelength, medium, and temperature dependent competition between dissociative loss of CO and fragmentation enables selective photogeneration of

coordinatively unsaturated $M_3(CO)_{11}$ (M=Fe,Ru) fragments with near-UV irradiation of $M_3(CO)_{12}$ in methylcyclohexane glasses according to eq 1 or, alternatively, reactive dinuclear Ru adducts of π -acceptor ligands (L=CO and C_2H_4) but not PPh_3 with visible light irradiation of $Ru_3(CO)_{12}$ in low-temperature alkane solutions according to eq 2.

$$M_3(CO)_{12} \xrightarrow{h\nu, 90 \text{ K}} M_3(CO)_{11} + CO$$
 (1)

$$Ru_{3}(CO)_{12} \xrightarrow{h\nu, 195 \text{ K}} Ru(CO)_{4}L + Ru_{2}(CO)_{8}L \quad (2)$$

Interest in a detailed understanding of the photofragmentation of M₃(CO)₁₂ clusters stems from olefin isomerization activity initiated at elevated temperatures ($M = Fe^{1}, Ru^{2}$) and catalytic isomerization and hydrosilation of olefins initiated at ambient temperatures by visible light irradiation³⁻⁵ of solutions containing these cluster precursors. Interest in $M_3(CO)_{12}$ (M = Ru, Fe) complexes stems additionally from some important capabilities of trinuclear Ru and Fe carbonyl complexes, 6,7 including reduction of NO.8 RCN,9 and RNC10 with H₂ on trinuclear Ru carbonyl complexes and the similar reduction of RCN on trinuclear Fe carbonyl complexes.¹¹ Such reactions are difficult or impossible to effect at single metal atom centers.

A major focus of our current research is to better understand and control the photochemical generation of electron deficient polynuclear metal-carbonyl complexes via dissociative ligand loss or metal framework rearrangement in an attempt to minimize cluster fragmentation^{12,13} and to systematically channel reactions via associative pathways at low temperature. The Ru₃(CO)₁₂ and Fe₃(CO)₁₂ complexes serve as excellent candidates for our investigation in light of their propensity to undergo both thermal (Ru, 14 Fe¹⁵) and photochemical (Ru, 16 Fe^{3,17}) fragmentation in fluid solution.

While relevant photoprocesses for $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$ are not completely understood, 18-20 recent investigations of

(1) (a) Manual, T. A. J. Org. Chem. 1962, 27, 3941-3945. (b) Casey, C. P.; Cyr, C. R. J. Am. Chem. Soc. 1973, 95, 2248-2253. (c) Bingham, D.; Hudson, B.; Webster, D. E.; Wells, P. B. J. Chem. Soc., Dalton Trans. 1974, 1521-1524.

(2) Castiglioni, M.; Milone, L.; Osella, D.; Vaglio, G. A.; Valle, M. Inorg. Chem. 1976, 15, 394-396.

(3) Austin, R. G.; Paonessa, R. S.; Giordano, P. J.; Wrighton, M. S. Adv. Chem. Ser. 1978, 68, 189-214.

(4) Graff, J. L.; Sanner, R. D.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 273-275. Graff, J. L.; Sanner, R. D.; Wrighton, M. S. Organometallics 1982, 1, 837-842.

(5) Mitchener, J. C.; Wrighton, M. S. J. Am. Chem. Soc. 1981, 103, 975-977.

(6) (a) Bruce, M. I. In Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 4. (b) Johnson, B. F. G.; Lewis, J. Pure App. Chem. 1975, 44, 43-79. Johnson, B. F. G.; Lewis, J. Adv. Inorg. Chem. Radiochem. 1981, 24,

(7) Deeming, A. J. In Transition Metal Clusters; Johnson, B. F. G., Ed.; Wiley: Chichester, 1980.

(8) Johnson, B. F. G.; Lewis, J.; Mace, J. M. J. Chem. Soc., Chem. Commun. 1984, 186-188.

(9) Bernhardt, W.; Vahrenkamp, H. Angew. Chem. 1984, 96, 362-363. (10) Bruce, M. I.; Wallis, R. C. J. Organomet. Chem. 1979, 164, C6-C8, Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1982, 35, 709-714.

(11) Andrews, M. A.; Kaesz, H. D. J. Am. Chem. Soc. 1977, 99, 6763-6765; 1979, 101, 7255-7259.

(12) For example, Fe₃(CO)₁₂ reacts with alkenes at 353 K to form Fe- $(CO)_4(\eta^2$ -olefin) complexes; see ref 1b.

(13) For these clusters, the average metal-metal bond energy is compa-

rable to, not larger than, the average metal-carbon bond energy. Connor, J. A. Top. Curr. Chem. 1977, 71, 71-110.

(14) (a) Põe, A. J.; Twigg, M. V. Inorg. Chem. 1974, 13, 2982-2985. (b) Malik, S. K.; Põe, A. J. Inorg. Chem. 1978, 17, 1484-1488. (c) Cobbledick, R. E.; Einstein, F. W. B.; Pomeroy, R. K.; Spetch, E. R. J. Organomet. Chem.

(15) (a) Eady, C. R.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton Trans. 1975, 2606-2611. (b) Clifford, A. F.; Makherjee, A. K. Inorg. Chem. **1963**, 2, 151-153.

(16) Johnson, B. F. G.; Lewis, J.; Twigg, M. V. J. Organomet. Chem. 1974, 67, C75-C76, Johnson, B. F. G.; Lewis, J.; Twigg, M. V. Dalton Trans. 1975, 1876-1879.

(17) Kane, V. V.; Light, J. R. C.; Whiting, M. C. Polyhedron 1984, 4,

(18) Geoffroy, G. L.; Wrighton, M. S. Organometallic Photochemistry; Academic Press: New York, 1979.

(19) Tyler, D. R.; Levenson, R. A.; Gray, H. B. J. Am. Chem. Soc. 1978, 100, 7888-7893

(20) Grevels, F.-W.; Reuvers, J. G. A.; Takats, J. J. Am. Chem. Soc. 1981, 103, 4069-4073.

Ru₃(CO)₁₂ photofragmentation kinetics^{21,22} have provided compelling evidence against proposals of reactive diradical intermediates and have conclusively demonstrated the existence of a reactive Ru₃ species as a primary photoproduct leading to photofragmentation. Recent flash photolysis results²³ also provide evidence for a second intermediate associated with wavelength dependent ligand photosubstitution.

Experimental Section

Instrumentation and irradiation procedures are presented in the accompanying paper in this issue.²⁴ Reactive gas solubilities in alkane media at 298 K and 1 atm were estimated from literature data:²⁵ [CO] = 0.01 M, $[C_2H_4]$ = 0.05 M, $[N_2]$ = 0.004 M.

Materials. Fe(CO)₅, Fe₃(CO)₁₂, and Ru₃(CO)₁₂ were obtained from Strem Chemicals. Fe(CO)₅ was passed through Al₂O₃ prior to use, Fe₃(CO)₁₂ was recrystallized from hexanes in the dark, and Ru₃(CO)₁₂ was used as received. Ru(CO)₃(PPh₃)₂, Fe(CO)₃(PPh₃)₂, Ru(CO)₄-(PPh₃), and Fe(CO)₄(PPh₃) were available from previous work.²⁶ The PPh₃ (Aldrich) was recrystallized 3 times from EtOH. Photochemistry at 90 K was carried out by using 3-methylpentane (Aldrich, 99+%), methylcyclohexane (J.T. Baker, Photorex grade), 2-methyltetrahydrofuran (Aldrich), or 1-pentene (99+%, Phillips) as the glass material. Photochemistry at 195 K was also carried out in isooctane (J.T. Baker, Photorex grade). All solvents except 1-pentene were distilled over Na under Ar prior to use. 1-Pentene was passed through activated Al₂O₃ (neutral, Woelm) and degassed. Research grade CO, C_2H_4 ; and N_2 were obtained from Matheson. The ^{13}CO (99% ^{13}C , <4% ^{18}O) and $^{15}N_2$ (99% 15N) were obtained from Cambridge Isotope Laboratories.

Methods. Fe₃(CO)₁₁(PPh₃)²⁷ and Ru₃(CO)₁₁(PPh₃)²⁸ complexes were prepared by literature methods. Clean solutions of $Fe(CO)_4(C_2H_4)$ and $Fe(CO)_3(C_2H_4)_2$ were prepared as previously described.²⁹ Ru(CO)₅ and $Ru(CO)_4(C_2H_4)$ were prepared quantitatively by visible light ($\lambda > 420$ nm) irradiation of 1 mM Ru₃(CO)₁₂ in a CO- or C₂H₄-saturated alkane solution, respectively; IR characterization of Ru(CO)₅³⁰ and Ru(CO)₄-

 $(C_2H_4)^{16}$ are in accord with previous reports. The Ru₃(^{13}CO)₁₂ (>95% ^{13}C) complex was prepared by near-UV irradiation of a toluene solution of Ru₃(CO)₁₂ under 1 atm of ¹³CO. Removal of solvent yielded a yellow solid which was purified by chromatography on silica gel by using hexanes as eluant. The Ru₃(13CO)_n- $(CO)_{12-n}$ $(n \approx 5)$ complex was prepared indirectly as follows. Near-UV irradiation of \sim 5 mM Ru₃(CO)₁₂ in a C₂H₄-purged isooctane solution at 298 K was discontinued after conversion to an equimolar solution of Ru(CO)₄(C₂H₄) and Ru(CO)₃(C₂H₄)₂ as determined by IR spectroscopy.²⁹ Treatment of the resulting colorless solution with ¹³CO (1 atm) at 298 K for 2 min led to rapid spectral changes without coloration of the solution, consistent with the complete conversion of Ru(CO)₄(C₂H₄) and Ru(CO)₃(C₂H₄)₂ initially to presumed Ru(CO)₄(¹³CO) and Ru(CO)₃-(13CO)₂. The solution was then purged with Ar for 30 min to generate predominantly Ru₃(CO)_{12-n}(¹³CO)_n, which was purified by chromatography (hexanes) on silica gel. Removal of solvent under vacuum vielded a yellow solid which was partially ¹³C-enriched. Near-UV irradiation of the partially ¹³CO-enriched Ru₃(CO)₁₂ in a methylcyclohexane glass at 90 K yielded loss of CO (2132 cm⁻¹)³¹ and ¹³CO (2085 cm⁻¹) in a

1.5:1.0 ratio, suggesting \sim 40% ¹³CO-enrichment. Long wavelength (λ > 540-nm) irradiation of 1 mM Fe₃(CO)₁₂ in a C₂H₄-saturated CF₃C₆F₁₁ (Fluka AG) solution was monitored by ¹H

2298-2303.

⁽²¹⁾ Desrosiers, M. F.; Ford, P. C. Organometallics 1982, 1, 1715-1716. (22) (a) Malito, J.; Markiewicz, S.; Pöe, A. Inorg. Chem. 1982, 21, 4335-4338

^{(23) (}a) Desrosiers, M. F.; Wink, D. A.; Ford, P. C. Inorg. Chem. 1985,

^{(25) (}a) Desiosiers, M. F.; Wink, D. A.; Ford, P. C. Inorg. Chem. 1965,
24, 1-2. (b) Desrosiers, M. F.; Wink, D. A.; Trautman, R.; Friedman, A. E.;
Ford, P. C. J. Am. Chem. Soc. 1986, 108, 1917-1927.
(24) Bentsen, J. G.; Wrighton, M. S., preceding paper in this issue.
(25) (a) Stephen, H.; Stephen, T. Solubility of Inorganic and Organic Compounds; Macmillan: New York, 1963. (b) Seidel, A.; Linke, W. F. Solubilities of Inorganic and Metal Organic Compounds, 4th ed.; D. van Nostrand Co.; Princeton, NJ.

⁽²⁶⁾ Liu, D. K.; Brinkley, C. G.; Wrighton, M. S. Organometallics 1984, *3*, 1449-1457.

⁽²⁷⁾ Bruce, M. 1.; Kehoe, D. C.; Matisons, J. G.; Nicholson, B. K.; Rieger, P. H.; Williams, M. L. J. Chem. Soc., Chem. Commun. 1982, 442-444.
(28) Bruce, M. I.; Matisons, J. G.; Nicholson, B. K. J. Organomet. Chem.

^{1983, 247, 321-343.}

⁽²⁹⁾ Wuu, Y.-M.; Bentsen, J. G.; Brinkley, C. G.; Wrighton, M. S. *Inorg. Chem.* 1987, 26, 530-540.

⁽³⁰⁾ Rushman, P.; van Buuren, G. N.; Shirallan, M.; Pomeroy, R. K. Organometallics 1983, 2, 693-694. (31) Leroi, G. E.; Ewing, G. E.; Pimentel, G. C. J. Chem. Phys. 1964, 40,

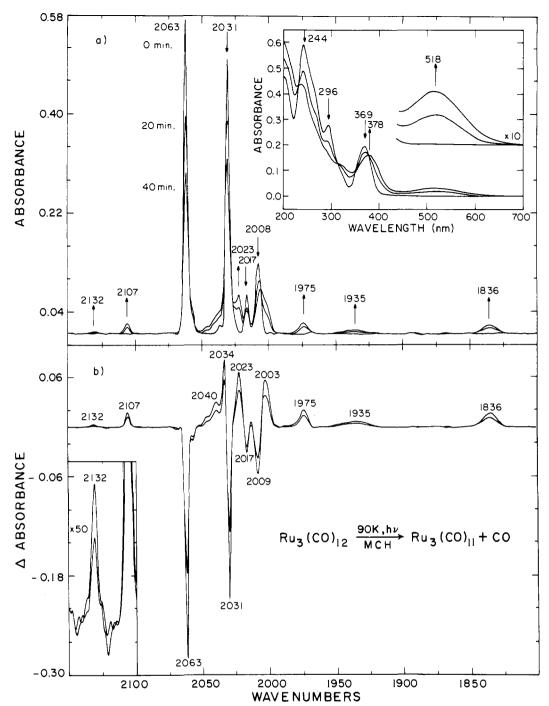


Figure 1. (a) IR and UV-vis (inset) spectral changes and (b) associated IR difference spectra accompanying near-UV irradiation of 0.1 mM $Ru_3(CO)_{12}$ in a neat MCH glass at 90 K. The $Ru_3(CO)_{12}$ solution was prepared at 298 K under Ar. The band growing in at 2132 cm⁻¹ (spectrum b, inset) is attributed to free CO in the glass, while the remaining photoproduct spectral features are attributed to the bridged form of coordinatively unsaturated $Ru_3(CO)_{11}$.

NMR in a septum-sealed NMR tube. All ¹H NMR spectra were recorded on a Bruker 250-MHz Fourier transform NMR spectrometer by using cycloheptane as internal standard, 1.54 ppm vs. SiMe₄. The irradiation was carried out in a clear Dewar flask at 298 K by using H_2O as the thermostatic bath. Corresponding UV-vis and IR spectral changes establish the extent conversion and enable correlation of IR absorptions with integrated ¹H NMR singlets attributed to $Fe(CO)_3(C_2H_4)_2$ and $Fe(CO)_4(C_2H_4)$ products.

Results

A. Dissociative Loss of CO from $M_3(CO)_{12}$ (M = Ru, Fe) Complexes in Alkane Glasses at 90 K. (i) Characterization of CO-Bridged Ru₃(CO)₁₁. Broad band near-UV irradiation of \sim 0.1 mM Ru₃(CO)₁₂ in a 3-methylpentane (MP) or methylcyclohexane (MCH) glass at 90 K results in clean FTIR and UV-vis spectral changes, Figure 1, when the initial fluid solution is prepared under

an Ar atmosphere. While these same spectral changes accompany 313-nm irradiation into the overlapping second and third electronic absorptions (329 sh and 296 nm, respectively), $\lambda = 366$ -, 436-nm and $\lambda > 370$ -nm irradiations into the low-energy tail of the first absorption band for Ru₃(CO)₁₂ at 90 K (centered at 369 nm) yield no spectral changes, even after prolonged irradiation. All absorbance changes in Figure 1 occur in a constant ratio at up to 90% conversion and are subsequently persistent in the dark for several hours at 90 K. The IR spectral changes show decline of absorption attributed to Ru₃(CO)₁₂, Table I, growth of a band at 2132 cm⁻¹ associated with free CO in the glass,³¹ growth of a prominent absorption at 1836 cm⁻¹, and growth of a number of bands in the region where Ru₃(CO)₁₂ absorbs. UV-vis spectral changes for the same sample show a decline in absorbance for the intense, metal-centered electronic transitions for Ru₃(CO)₁₂

Table I. IR and UV-vis Data for Relevant Complexes^a

species Ru ₃ (CO) ₁₂	temp, K	absorption maxima			
		ν , cm ⁻¹ (ϵ or rel od)	λ , nm (ϵ or rel od)		
		2061 (24500), 2031 (14600), 2017 (3600), 2011 (9000)	392 (7700), 322 sh (8300), 272 sh (27 000), 240 (42 000)		
	90	2063 (48 000), 2031 (42 000), 2017 (6400), 2008 (12 000)	369 (17000), 320 sh (11000), 296 (25000), 265 sh (39000), 244 (53000)		
Ru ₃ (CO) ₁₁ terminal form ^e	90 ^d	2124 (300), 2110 (2300), 2062 (14 000), 2054 (23 000), 2042 (3400), 2033 (16 000), 2026 (20 000), 2011 (9400), 1975 (1300)	497 sh (1000), 387 (6300), 342 (10 000), 316 sh (7200), 291 (14 000), 264 sh (14 000)		
Ru ₃ (CO) ₁₁ bridged form ^e	90	2107 (2500), 2063 (15000), 2039 sh (4500), 2033 (29000), 2023 (9300), 2005 (8300), 1975 (3000), 1935 (1000), 1836 (2300)	518 (3300), 388 (14000), 329 (8100), 273 (13000)		
	90 ^b	2113 (1.0), 2075 (2.3), 2065 (6.9), 2036 (7.0), 2018 (2.6), 2008 (1.3), 1986 (1.8), 1950 (0.6), 1831 (5.8), 1824 (5.8)			
$Ru_3(CO)_{11}(N_2)^e$	90	2248 (1400), 2108 (2900), 2059 (28 000), 2047 (25 000), 2032 (12 000), 2016 (26 000), 2004 (9800), 1986 (610)	373 (11 000), 328 sh (15 000), 297 (28 000), 269 (37 000), 244 (52 000)		
$Ru_3(CO)_{11}(^{15}N_2)^e$	90	2174 (1200), 2105 (2900), 2059 (28 000), 2047 (25 000), 2032 (12 000), 2016 (26 000), 2004 (9800), 1986 (610)			
$Ru_3(CO)_{11}(C_2H_4)$	90	2110 (1.0), 2057 (8.0), 2044 (6.0), 2024 (12), 2015 (3.4), 1999 (2.3), 1992 (1.5), 1973 (1.0)			
Ru ₃ (CO) ₁₁ (¹³ CO) equil mixture	90	2063 (13), 2057 (10), 2030 (10), 2027 (8), 2017 (2), 2010 (5), 1967 (1)			
$Ru_3(CO)_{11}(^{13}CO)$ axial	90	2063 (7), 2057 (12), 2036 (3), 2027 (12), 2017 (1), 2010 (4), 1967 (1)			
Ru ₃ (CO) ₁₁ (¹³ CO) equatorial ^f	90	2063 (12), 2057 (7), 2030 (15), 2017 (3), 2010 (3), 1970 (1)			
intermediate X	195 ^c	2075 (1.0), 2062 (3.0), 2035 sh (1.5), 2023 (5.7), 2015 (2.2), 2010 (1.0), 1978 sh (1.0), 1970 (1.9), 1791 (1.0)			
Ru ₃ (CO) ₁₁ (2-MeTHF) terminal form	90 ^b	2102 (1.0), 2059 (6), 2049 (11), 2026 (11), 2012 (6), 1970 (2)			
$Ru_2(CO)_8(C_2H_4)$	195°	2114 (0.03), 2109 (0.03), 2065 (2.2), 2030 (5.2), 2017 (3.7), 2004 (2.0), 1805 (1.0)			
$Fe_3(CO)_{12}$	298	2102 (100), 2047 (27 800), 2025 (6800), 2013 sh, 1972 (420), 1871 (340), 1840 (420)	602 (3200), 437 sh (2500), 360 sh (6400), 310 sh (14000), 270 sh (19000)		
	90	2108 (700), 2051 (28 000), 2048 (33 000), 2029 (20 000), 2017 (4700), 2010 (5300), 1866 (1300), 1829 (3300)	605 (5200), 435 (4800), 360 sh (9200), 320 sh (19000), 297 (20000), 270 sh		
Fe ₃ (CO) ₁₁	90	2103 (200), 2059 (17000), 2050 sh (4600), 2045 (19000), 2035 (10000), 2030 (6100), 2019 (8500), 2003 (1400), 1975 (1500), 1858 (1400)			
$Fe_3(CO)_{11}(C_2H_4)$	90	2096 (1.5), 2040 (4.0), 2034 (3.5), 2019 (6.5), 2001 (1.8), 1985 (2.0), 1845 (1.0), 1805 (1.6)			
Fe ₃ (CO) ₁₁ (2-MeTHF)	195 90 ^b	2095 (3), 2041 (10) 2022 (12), 2008 (6), 1815 br (1) 2089 (2.0), 2031 (12), 2015 sh (8.5), 2007 (12), 1981 (3.5), 1955 (1.5), 1942 (1.8), 1835 (1.0), 1783 (1.8)			

^a All spectra are measured in methylcyclohexane unless specified otherwise; IR spectra are recorded at 2-cm⁻¹ resolution and UV-vis data are accurate to ± 2 nm. Extinction coefficients are uncorrected for solvent contraction. b In 2-MeTHF. c In isooctane. d In a methylcyclohexane glass doped with 1\% 3-methylpentane. Extinction coefficients estimated assuming clean conversion to a single product by digital subtraction of spectral features associated with unreacted M₃(CO)₁₂. Relative intensities estimated by digital subtraction of the 90 K spectral features for axial-¹³CO-Ru₃(CO)₁₁(13CO) from those obtained at 90 K for the equilibrium mixture of isoenergetic isomers.

at 369 and 296 nm, concomitant growth of equally intense electronic absorbances at 388 and 329 nm (sh), maintenance of an isobestic point at 378 nm, and growth of a weak, low-energy absorption centered at 518 nm. The 2132-cm⁻¹ feature shows that dissociative loss of CO occurs from photoexcited $Ru_3(CO)_{12}$. In accord with a previous report,32 the molar absorptivity of free CO $(\sim 400 \text{ M}^{-1} \text{ cm}^{-1} \text{ at } 2132 \text{ cm}^{-1})$ in a 90 K MCH glass has been determined independently by measuring the absorptivity at 2132 cm⁻¹ for known fractional light-induced conversion of Cr(CO)₆ or W(CO)₆ to CO and the appropriate M(CO)₅ fragment. This result allows quantitative determination of the number of CO molecules liberated in the photolysis of Ru₃(CO)₁₂ at 90 K. Determination of the stoichiometry of CO loss from photoexcited $Ru_3(CO)_{12}$ in MCH at 90 K is complicated by the fact that, in Figure 1, direct quantitation of the photochemical consumption of Ru₃(CO)₁₂ is not possible due to overlapping reactant and product electronic and IR absorption features. In particular, both Ru₃(CO)₁₂ and the CO-bridged photoproduct absorb strongly at 2063 cm⁻¹. To alleviate this problem, the observed photoproduct is reacted with excess $L = N_2$ or C_2H_4 at low temperature to yield Ru₃(CO)₁₁L complexes which do not absorb at 2063 cm⁻¹; the amount of free CO in the glasses does not change during these

reactions. Importantly, the amount of free CO detected is consistent with the loss of one CO per molecule of Ru₃(CO)₁₂ consumed in the initial photolysis, even at >90% conversion. For the observed photoproduct, the 518-nm feature is consistent with coordinative unsaturation; the 388- and 329-nm features suggest retention of the trinuclear cluster framework, and the 1836 cm⁻¹ feature indicates a structure containing at least one bridging CO ligand. Thus, eq 1 represents the low-temperature photochemistry of Ru₃(CO)₁₂ in an alkane glass. Consistent with its formulation, photogenerated Ru₃(CO)₁₁ reacts upon warmup with PPh₃ (vide infra) to yield Ru₃(CO)₁₁(PPh₃).

The 1836-cm⁻¹ feature for the bridged form of Ru₃(CO)₁₁ is replaced by a 1794-cm⁻¹ absorbance when Ru₃(13CO)₁₂ is irradiated in place of Ru₃(CO)₁₂ at 90 K. During photolysis the 2085-cm⁻¹ (photoejected ¹³CO) and 1794-cm⁻¹ (Ru₃(¹³CO)₁₁) features grow in the same constant ratio observed for the 2132and 1836-cm⁻¹ features associated with irradiation of natural abundance $Ru_3(CO)_{12}$. When $Ru_3(CO)_{12-n}(^{13}CO)_n$ is irradiated at 90 K, the free ¹²CO (2132-cm⁻¹) and ¹³CO (2085-cm⁻¹) features grow in a 1.5:1 ratio, and prominent bridging carbonyl features, attributed to photogenerated Ru₃(CO)_{11-m}(13 CO)_m, grow in a 1.5:1 ratio at 1836 and 1794 cm⁻¹, consistent with \sim 40% 13 C-enrichment. Importantly, an additional shoulder is observed at 1805 cm⁻¹. The band shapes observed in the bridging CO region for $Ru_3(CO)_{11-m}(^{13}CO)_m$ do not conform to a superposition of bridging

spectral features observed for $Ru_3(CO)_{11}$ and $Ru_3(^{13}CO)_{11}$. While not conclusive, these results suggest vibrational coupling of multiple bridging CO oscillators for $Ru_3(CO)_{11}$. Furthermore, IR spectral data support a similar CO-bridged structure for $Ru_3(CO)_{11}$ in a 2-methyltetrahydrofuran (2-MeTHF) glass at 90 K (vide infra). In this glass the CO-bridging feature shifts to lower energy and is split into two distinct absorbances at 1831 and 1824 cm⁻¹. Similar medium dependent spectral shifts are observed in the bridging CO region for $Fe_3(CO)_{12}$ and for $trans-(\eta^5-C_5Me_5)_2Fe_2(CO)_4^{33}$ at 90 K.

(ii) Characterization of CO-Bridged Fe₃(CO)₁₁. In an alkane glass at 90 K the IR spectral features for Fe₃(CO)₁₂ are in close agreement with those reported previously³⁴ in Ar and N₂ matrices at 20 K, consistent with site-separated Fe₃(CO)₁₂ molecules having the doubly bridged $C_{2\nu}$ structure observed in the solid state, 35 Table I. The 90 K spectra are complicated by aggregation at concentrations of Fe₃(CO)₁₂ exceeding 0.02 mM. This low concentration of Fe₃(CO)₁₂ needed to circumvent aggregation has severely limited low-temperature investigations of this complex. The UV-vis spectrum at 90 K shows features similar to those observed for the terminal form in fluid solution at 298 K. As previously noted, 19 the first electronic absorption for Fe₃(CO)₁₂ red-shifts slightly on cooling, while the second electronic absorption blueshifts. Both features are well-resolved from higher energy features at 90 K, thus enabling selective excitation with $\lambda > 540$ -nm or $\lambda = 436$ -nm irradiation, respectively.

Near-UV irradiation of ~ 0.02 mM Fe₃(CO)₁₂ in a MCH glass at 90 K yields clean FTIR and UV-vis spectral changes which occur in constant ratio at up to 90% conversion and persist for several hours at 90 K. While these same spectral changes accompany 313 and 366-nm irradiation into the third electronic absorption, 436-nm photoconversion proceeds extremely slowly and $\lambda > 540$ -nm irradiation into the first absorption band for Fe₃(CO)₁₂ at 90 K (centered at 605 nm) yields no spectral changes, even after prolonged irradiation. When photoconversion is achieved, the decline of IR absorptions for Fe₃(CO)₁₂ is accompanied by growth of absorption at 2132 cm⁻¹, growth of a prominent absorption at 1858 cm⁻¹, and growth of new terminal CO features in the region of those for Fe₃(CO)₁₂. Corresponding UV-vis spectral changes show a decline in the absorbance for the intense metal-centered electronic transitions associated with Fe₃(CO)₁₂ at 605 and 435 nm and corresponding growth of intense overlapping featureless absorption which tails to wavelengths longer than 800 nm. The magnitude of 2132-cm⁻¹ absorption shows loss of one CO molecule per Fe₃(CO)₁₂ consumed, and the electronic spectral changes suggest retention of Fe-Fe bonding interactions in the product. Importantly, IR spectral features for the Fe photoproduct are similar to those obtained for the bridged form of Ru₃(CO)₁₁, suggesting a similar structure for photogenerated $Fe_3(CO)_{11}$, Table I. Interestingly, the corresponding $Os_3(CO)_{11}$ complex has no bridging CO's.²⁴

(iii) Reaction of Photogenerated $M_3(CO)_{11}$ (M = Ru, Fe) Complexes with PPh₃. Warmup to 298 K of a 90 K MCH glass containing photoejected CO and the accumulated CO-bridged forms of $M_3(CO)_{11}$ (M = Ru, Fe) results in quantitative regeneration of $M_3(CO)_{12}$. For Ru, similar warmup to 298 K in the presence of 10 mM PPh₃ or 10 mM PPh₃ and 10 mM CCl₄ yields net IR spectral changes at 298 K consistent with regeneration of Ru₃(CO)₁₂ in competition with quantitative conversion of irreversibly consumed Ru₃(CO)₁₂ to the well-characterized Ru₃-(CO)₁₁(PPh₃) complex. ³⁶ For Fe, warmup to 195 K in the presence of 10 mM PPh₃ yields Fe₃(CO)₁₁(PPh₃). In accord with the known thermal lability of Fe₃(CO)₁₁(PPh₃), ³⁷ further warmup to 298 K of this 195 K solution results in fragmentation of the

 $Fe_3(CO)_{11}(PPh_3)$ complex to give a mixture of $Fe(CO)_4(PPh_3)$ and $Fe(CO)_3(PPh_3)_2$ complexes. Mononuclear $M(CO)_4(PPh_3)$ and $M(CO)_3(PPh_3)_2$ complexes are not obtained for M=Ru at 298 K or for M=Fe at 195 K, consistent with light-induced loss of CO from $M_3(CO)_{12}$ at 90 K according to eq 1. Photofragmentation of the M_3 framework of $M_3(CO)_{12}$ at 90 K apparently does not occur. Also, thermal reaction of $M_3(CO)_{11}$ with PPh_3 does not lead to fragmentation.

Interestingly, warmup to 298 K of 90 K MCH glasses containing photogenerated $Ru_3(CO)_{11}$ (0.05 mM), photoejected CO, and 2 mM or 10 mM PPh₃ gives 50% and 30% regeneration of $Ru_3(CO)_{12}$, respectively. These results suggest a significant selectivity for reaction of $Ru_3(CO)_{11}$ with CO vs. PPh₃, consistent with a delocalized unsaturation in $Ru_3(CO)_{11}$.

(iv) Reaction of $M_3(CO)_{11}$ (M = Ru, Fe) Complexes with 2e⁻ Donor Ligands at Low Temperature. For 90 K MP or MCH glasses containing photogenerated M₃(CO)₁₁ (bridged form, M = Ru, Fe) and similar concentrations of deliberately added excess CO, the rate of regeneration of $M_3(CO)_{12}$ is orders of magnitude greater in MP than in MCH. At 90 K, the M₃(CO)₁₁ species react to regenerate $M_3(CO)_{12}$ in MP, but in MCH $M_3(CO)_{11}$ is inert. However, warming the MCH glass to 110 K retains the integrity of the glass and results in rapid IR spectral changes which persist on recooling the glass to 90 K, consistent with quantitative regeneration of $M_3(CO)_{12}$. In the absence of excess CO, the bridged forms of Ru₃(CO)₁₁ and Fe₃(CO)₁₁ persist undiminished during a similar excursion to 110 K in MCH. As in studies of Os₃(CO)₁₁,²⁴ such kinetic control has enabled leisurely investigation of the bimolecular reactions of photogenerated Ru₃(CO)₁₁ with CO, N_2 , and C_2H_4 according to eq 3.

$$Ru_{3}(CO)_{11} + L \xrightarrow{110 \text{ K, alkane}} Ru_{3}(CO)_{11}L \qquad (3)$$

Preparation of $Ru_3(CO)_{11}(N_2)$. Data in Figure 2 establishes reaction of $Ru_3(CO)_{11}$ with N_2 to give $Ru_3(CO)_{11}(N_2)$. Near-UV irradiation of ~0.1 mM Ru₃(CO)₁₂ in a N₂-containing MCH glass at 90 K results in initial IR and UV-vis spectral changes consistent with Figure 1 and eq 1. Warmup to 110 K of the irradiated 90 K glass yields IR and UV-vis spectral changes which persist on recooling the glass to 90 K. Figure 2a shows the net IR spectral changes associated only with the 110 K excursion. Negative deviations indicate decline of the CO-bridged form of photogenerated Ru₃(CO)₁₁, while positive deviations are associated with formation of $Ru_3(CO)_{11}(N_2)$. Complete decline of the 518-nm and 1836-cm⁻¹ features during the 110 K excursion indicates quantitative consumption of CO-bridged Ru₃(CO)₁₁ by reaction with N_2 to yield $Ru_3(CO)_{11}(N_2)$, exhibiting only terminal CO features similar to those for axially (perpendicular to the plane defined by the trinuclear M₃ framework) substituted Os₃-(CO)₁₁(N₂).²⁴ An associated feature at 2248 cm⁻¹ (Figure 2a, insert) is attributed to coordinated N_2 and shifts to 2174 cm⁻¹ (predicted at 2172 cm⁻¹) when $^{15}N_2$ (99% ^{15}N) is used as the reagent gas (Figure 2b). Bound N2 induces a secondary isotope shift of three wavenumbers for the product CO feature which overlaps the declining 2107-cm⁻¹ feature of the bridged form of $Ru_3(CO)_{11}$. Repetition of this experiment using a 50:50 mixture of $^{15}N_2$ and $^{14}N_2$ gives net FTIR spectral changes which resemble a superposition of the spectral features presented in Figure 2 (parts a and b) for reaction of Ru₃(CO)₁₁ with the isotopically pure gases. The absence of a weak low-energy (~500 nm) electronic absorption feature in $Ru_3(CO)_{11}(N_2)$ is consistent with the fact that the N_2 adduct is coordinatively saturated. Ru₃(CO)₁₁(N₂) has an electronic absorption spectrum (Table I) that is very similar to that found in the near-UV for Ru₃(CO)₁₂, indicating retention of a relatively unperturbed Ru₃ framework upon conversion of $Ru_3(CO)_{12}$ to $Ru_3(CO)_{11}(N_2)$.

The absence of any absorbance change at 2132 cm^{-1} for the 110 K excursion (Figure 2, insets) indicates that the amount of photogenerated CO remains constant in the glass upon conversion of the initial CO-bridged photoproduct to $Ru_3(CO)_{11}(N_2)$. Since $Ru_3(CO)_{12}$ is thermally inert at 110 K, the negative deviations at 2063 and 2033 cm⁻¹ in Figure 2 (parts a and b) can only be

⁽³³⁾ Hepp, A. H.; Blaha, J. P.; Lewis, C.; Wrighton, M. S. Organometallics 1984, 3, 174-177.

⁽³⁴⁾ Poliakoff, M.; Turner, J. J. J. Chem. Soc. A 1971, 654-658.
(35) (a) Wei, C. H.; Dahl, L. F. J. Am. Chem. Soc. 1969, 91, 1351-1361.
(b) Cotton, F. A.; Troup, J. M. J. Am. Chem. Soc. 1974, 96, 4155-4159.
(36) Forbes, E. J.; Goodhand, N.; Jones, D. L. J. Organomet. Chem. 1979,

⁽³⁷⁾ Angelici, R. J.; Siefert, E. E. *Inorg. Chem.* **1966**, 5, 1457-1459.

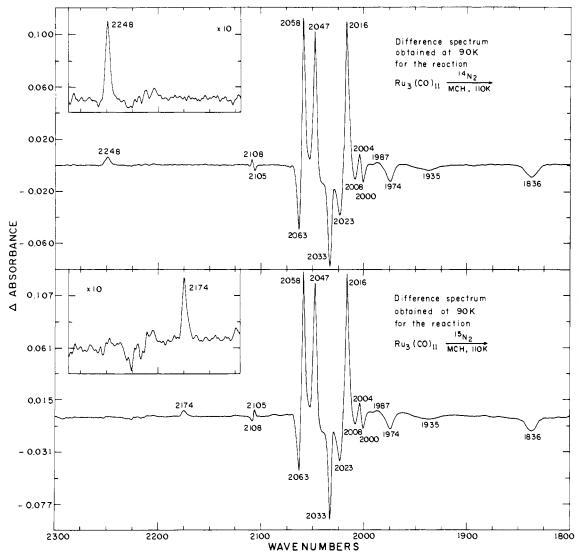


Figure 2. IR difference spectral changes at 90 K associated with brief warming to 110 K of a 90 K MCH glass containing photogenerated Ru₃(CO)₁₁, photoejected CO, unreacted Ru₃(CO)₁₂, and excess N₂. Negative deviations are associated with consumption of the bridged form of photogenerated Ru₃(CO)₁₁, while positive deviations are associated with conversion to Ru₃(CO)₁₁(N₂). The band growing in at 2248 cm⁻¹ (inset) is assigned as a coordinated N2 stretch. (b) Corresponding IR difference spectral changes for reaction of photogenerated Ru3(CO)11 (bridged form) with 15N2; the band growing in at 2174 cm $^{-1}$ (inset) is assigned as a coordinated $^{15}\mathrm{N}_2$ stretch.

attributed to the decline of Ru₃(CO)₁₁ absorption features which overlap those for Ru₃(CO)₁₂. Establishment of the relative absorptivities of Ru₃(CO)₁₂ and bridged Ru₃(CO)₁₁ at 2063 and 2033 cm⁻¹ enables a clean stoichiometric determination in Figure 1 of one photoejected CO per Ru₃(CO)₁₂ molecule consumed and allows deconvolution of the remaining spectral features for the CO-bridged Ru₃(CO)₁₁. Importantly, absorbance changes associated with the two-step conversion of Ru₃(CO)₁₂ to Ru₃- $(CO)_{11}(N_2)$ are consistent with the presence of one free CO (2132) cm^{-1}) for every $Ru_3(CO)_{12}$ (2063 cm^{-1}) consumed to form $Ru_3(CO)_{11}(N_2)$ (see Supplementary Material). This result supports the formulation of Ru₃(CO)₁₁ as a species derived from the loss of one CO from Ru₃(CO)₁₂.

Not surprisingly, the N_2 of $Ru_3(CO)_{11}(N_2)$ is readily liberated and replaced by 2e donors. Warmup to 195 K of a 90 K alkane glass containing photogenerated Ru₃(CO)₁₁(N₂), photoejected CO, and excess N_2 leads to quantitative regeneration of $Ru_3(CO)_{12}$, while warmup to 298 K in the presence of 10 mM PPh₃ yields Ru₃(CO)₁₁(PPh₃), competitive with Ru₃(CO)₁₂ regeneration.

Preparation of $M_3(CO)_{11}(\eta^2$ -alkene) Complexes (M = Ru, Fe). In strict analogy to the preparation of Ru₃(CO)₁₁(N₂), warmup to 110 K of a MCH glass containing photogenerated $M_3(CO)_{11}$ (M = Ru, Fe), photoejected CO, and excess C_2H_4 (<10 mM) yields FTIR characterized products formulated as M₃(CO)₁₁- (C_2H_4) , Table I. $Ru_3(CO)_{11}(C_2H_4)$ exhibits only terminal car-

bonyl features analogous to those reported previously for the well characterized, equatorially substituted Os₃(CO)₁₁(C₂H₄) complex.³⁸ The net spectral changes associated with the two-step conversion of Ru₃(CO)₁₂ to Ru₃(CO)₁₁(C₂H₄) at low temperature are again consistent with initial photoejection of one CO from Ru₃(CO)₁₂. Fe₃(CO)₁₁(C₂H₄) exhibits bridging CO features at 1845 and 1805 cm⁻¹, suggesting a structure related to the C_{2v} isomer of $Fe_3(CO)_{12}$ by replacement of C_2H_4 for a terminal CO. Slow, but complete, regeneration of the terminal form of Fe₃- $(CO)_{12}$ accompanies warmup of $Fe_3(CO)_{11}(C_2H_4)$ and free CO to 195 K. The $M_3(CO)_{11}(C_2H_4)$ (M = Ru, Fe) complexes are more labile than the well-characterized Os₃(CO)₁₁(C₂H₄) complex and have thus far eluded ¹H NMR characterization in fluid solutions at 195 K.

Near-UV irradiation of ~ 0.1 mM Ru₃(CO)₁₂ or ~ 0.02 mM Fe₃(CO)₁₂ in neat 1-pentene glasses at 90 K initially yields decline of IR spectral features for $M_3(CO)_{12}$, growth of absorption at 2132 cm⁻¹ in an amount consistent with the loss of one CO, and growth of new CO features closely related to those observed in alkane glasses for $M_3(CO)_{11}(C_2H_4)$ (M = Ru, Fe). These new spectral features are consistent with direct photogeneration of M3-

⁽³⁸⁾ Johnson, B. F. G.; Lewis, J.; Pippard, D. A. J. Chem. Soc., Dalton Trans. 1981, 407-412.

 $(CO)_{11}(\eta^2-C_5H_{10})$ complexes. Continued irradiation yields unidentified secondary photoproducts after >50% conversion of the starting clusters.

Preparation of Axial-13CO-Ru₃(CO)₁₁(13CO). IR spectral data presented as Supplementary Material confirm that photogenerated, CO-bridged Ru₃(CO)₁₁ reacts with ¹³CO in a kinetically controlled fashion to yield axial-13CO-Ru₃(CO)₁₁(13CO) under conditions where fluxional processes associated with interconversion of the isoenergetic axial- and equatorial-13CO-Ru₃(CO)₁₁(13CO) complexes are completely suppressed. Near-UV irradiation of ~ 0.1 mM Ru₃(CO)₁₂ in a ¹³CO-containing (~1 mM as judged by FTIR absorbance at 2085 cm⁻¹) MCH glass at 90 K yields IR and UV-vis spectral changes consistent with clean photogeneration of free ¹²CO (2132 cm⁻¹) and the bridged form of Ru₃(CO)₁₁ (1836 cm⁻¹) according to eq 1. Warmup of this irradiated 90 K glass to 110 K gives IR spectral changes which persist on recooling the glass to 90 K. Complete restoration of all UV-vis spectral features to coincidence with those initially present for Ru₃(CO)₁₂ suggests that only Ru₃(CO)₁₁(13CO) is formed. Subsequent warmup of this 90 K glass to 298 K yields new IR spectral changes which persist on recooling the sample to 90 K. The 90 K UV-vis spectrum is unaltered by this excursion to 298 K, indicating complete retention of Ru₃(CO)₁₁(¹³CO) and Ru₃(CO)₁₂ species. The IR spectral features associated with Ru₃(CO)₁₁(¹³CO) clearly change as a result of the 298 K excursion, consistent with the original formation of a nonequilibrium excess of one isomer of Ru₃(CO)₁₁(¹³CO) during the initial 110 K excursion. Previous ¹³C NMR investigations for Ru₃(CO)₁₂³⁹ indicate that complete equilibration to an equal mixture of two Ru₃(CO)₁₁(¹³CO) isomers should be rapid on the time scale of the 298 K excursion. Indeed, the final IR spectral features are in close agreement with those reported previously⁴⁰ for the mixture of Ru₃(CO)₁₁(¹³CO) isomers in alkane media at 298 K. The 50% (±4%) decline of an intense 2027-cm⁻¹ product feature as a result of the 298 K excursion establishes that only one isomer of Ru₃(CO)₁₁(¹³CO) is obtained in the initial 110 K excursion. These IR spectral changes for Ru are similar to those established to result from conversion of isomerically pure axial-¹³CO-Os₃(CO)₁₁(¹³CO) to an equal mixture of axial- and equatorial-¹³CO isomers under similar conditions.²⁴ The 90 K IR spectral features for each of the two Ru₃(CO)₁₁(¹³CO) isomers have been deconvoluted, Table I, and absolute configurations assigned on the basis of considerations applied to the Os case, thereby establishing the conversion of the bridged form of Ru₃(CO)₁₁ cleanly to axial-¹³CO-Ru₃(CO)₁₁-(13CO) at low temperature. The spectral features obtained here for the two isomers of Ru₃(CO)₁₁(¹³CO) are in excellent agreement with those derived by Battiston et al.⁴⁰ This finding is consistent with an axial vacancy in the CO-bridged Ru₃(CO)₁₁ fragment. Interestingly, near-UV irradiation of axial-¹³CO-Ru₃(CO)₁₁(¹³CO) at 90 K yields IR spectral changes consistent with scrambling of the Ru₃(CO)₁₁(¹³CO) isomers on a time scale which is rapid compared to CO loss. Detailed studies of ¹³CO reaction with Fe₃(CO)₁₁ were not carried out due to the difficulties encountered with low concentrations of $Fe_3(CO)_{12}$.

(v) Isomerization of Ru₃(CO)₁₁ from a Terminal Form to a CO-Bridged Form. While Ru₃(CO)₁₁ and Fe₃(CO)₁₁ preferentially adopt a CO-bridged structure in alkane glasses at 90 K, Os₃(CO)₁₁ adopts an all terminal axially vacant structure.²⁴ Interestingly, in a neat MCH glass at 90 K, the axially vacant terminal form of Ru₃(CO)₁₁ is detected by rapid scan FTIR subsequent to a flash irradiation of the sample, but IR features for this initial product decline within 30 s to yield the persistent spectral features illustrated in Figure 1 for accumulation of the CO-bridged form of Ru₃(CO)₁₁. However, subtle factors control whether the

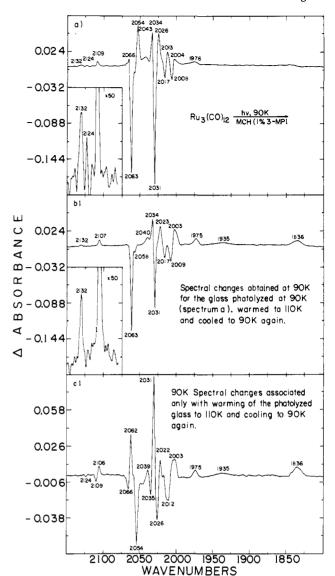


Figure 3. (a) IR difference spectral changes accompanying near-UV irradiation of 0.1 mM Ru₃(CO)₁₂ in a 90 K MCH glass doped with 1% MP. The Ru₃(CO)₁₂ solution was prepared under Ar. The band growing in at 2132 cm⁻¹ (inset) is attributed to free CO in the glass, while the remaining photoproduct spectral features are attributed to the terminal form of coordinatively unsaturated Ru₃(CO)₁₁. (b) IR difference spectral changes were obtained at 90 K for the glass photolyzed at 90 K (spectrum a), warmed to \sim 110 K, and recooled to 90 K again. The negative absorbance changes are associated with consumption of Ru₃(CO)₁₂ during the initial photolysis; the positive absorbance changes are attributed to the bridged form of Ru₃(CO)₁₁, obtained by isomerization from the terminal form of photogenerated Ru₃(CO)₁₁. The band associated with free CO at 2132 cm⁻¹ (inset) remains unchanged during the 110 K excursion. (c) IR difference spectral changes at 90 K associated only with the 110 K excursion (difference between spectra a and b). Negative deviations are associated with decline of the terminal form of photogenerated Ru₃(CO)₁₁ while positive deviations are associated with conversion to the bridged form of Ru₃(CO)₁₁.

terminal or bridged form of $Ru_3(CO)_{11}$ will be accumulated from irradiation of $Ru_3(CO)_{12}$ at 90 K.

Near-UV irradiation of ~ 0.1 mM Ru₃(CO)₁₂ in a MP doped (1%) MCH glass at 90 K yields persistent FTIR and UV-vis spectral changes, Figure 3a, significantly different from those which persist in the pure MCH glass, Figure 1. The IR spectral changes in Figure 3a show decline of absorption features for Ru₃(CO)₁₂, growth of a band at 2132 cm⁻¹ associated with free CO, and growth of a new set of terminal carbonyl features, some of which overlap those for Ru₃(CO)₁₂. Conspicuously absent is the bridging CO feature diagnostic for the bridged form of Ru₃(CO)₁₁. Associated UV-vis spectral changes (not shown) show

^{(39) (}a) Forster, A.; Johnson, B. F. G.; Lewis, J.; Matheson, T. W.; Robinson, B. H.; Jackson, W. G. J. Chem. Soc., Chem. Commun. 1974, 1042–1044. (b) Milone, L.; Aime, S.; Randall, E. W.; Rosenberg, E. J. Chem. Soc., Chem. Commun. 1975, 452–454. (c) Johnson, B. F. G.; Lewis, J.; Reichert, B. E.; Schorpp, K. T. J. Chem. Soc., Dalton Trans. 1976, 1403–1404.

⁽⁴⁰⁾ Battiston, G. A.; Bor, G.; Dietter, U. K.; Kettle, S. F. A.; Rossetti, R.; Sbrignaddelo, G.; Stanghellini, P. L. *Inorg. Chem.* 1980, 19, 1961–1973.

a decline in absorbance for the intense 369- and 296-nm features of Ru₃(CO)₁₂, growth of equally intense electronic absorptions at 387 and 342 nm, and growth of a weak, low-energy absorption shoulder at 497 nm. Warmup to 110 K of the irradiated 90 K glass vields IR and UV-vis spectral changes which persist on recooling the glass to 90 K, Figure 3 (parts b and c) (IR changes only). The IR spectral changes in Figure 3b are consistent with quantitative conversion of irreversibly consumed Ru₃(CO)₁₂ (negative deviations) to the CO-bridged form of Ru₃(CO)₁₁ [v $(cm^{-1}) = 1836$; λ (nm) = 518] (positive deviations). The IR spectral features in Figure 3c are consistent with complete conversion of the primary photoproduct (negative deviations) to the CO-bridged Ru₃(CO)₁₁ (positive deviations), without significant regeneration of Ru₃(CO)₁₂. Positive deviations at 2063 and 2033 cm⁻¹ (Figure 3c) are attributed to the bridged form of Ru₃(CO)₁₁. A second excursion to 110 K yields no further spectral changes. Importantly, comparison of the 90 K absorbance changes in the insets of Figure 3 (parts a and b) shows that the amount of free CO (2132 cm⁻¹) detected in the glass remains unchanged during conversion at 110 K of the initial photoproduct to the bridged form of Ru₃(CO)₁₁. For the initial photoproduct, the low-energy 497-nm feature is consistent with coordinative unsaturation, and the 387- and 342-nm features suggest retention of the trinuclear cluster framework. IR spectral features for the initial photoproduct are similar to those for the well established axially vacant Os₃(CO)₁₁ complex.²⁴ These results suggest formulation of the initial photoproduct (responsible for the persistent product features in Figure 3a) as an axially vacant form of Ru₃(CO)₁₁ with only terminal CO's. The axially vacant Os₃(CO)₁₁ complex reacts with ¹³CO at low temperature to yield axial-¹³CO-Os₃(CO)₁₁(¹³CO).²⁴ Similar reaction chemistry is obtained for the CO-bridged isomer of Ru₃(CO)₁₁, establishing that an axial vacancy is preserved in the isomerization of Ru₃(CO)₁₁ from the all terminal form (adopted by Os₃(CO)₁₁) to the CO-bridged form (adopted by Fe₃(CO)₁₁). As discussed for Os,²⁴ electronic factors favor an axial vacancy trans to CO, rather than an equatorial vacancy, trans to a metal-metal bond, in photogenerated $M_3(CO)_{11}$ (M = Fe, Ru, Os). The structure of CO-bridged $M_3(CO)_{11}$ (M = Ru, Fe) cannot be determined with certainty from the available IR data. The weak, low-energy, visible absorption associated with the axial vacancy in the two detected isomers of Ru₃(CO)₁₁ can be attributed to the appearance of a low-lying acceptor orbital of predominantly d₂² parentage, which becomes the new LUMO.^{41,42}

(vi) Irradiation of Ru₃(CO)₁₂ and Fe₃(CO)₁₂ in a 2-Methyltetrahydrofuran Glass at 90 K. Ru₃(CO)₁₂. Near-UV irradiation of ~0.1 mM Ru₃(CO)₁₂ in a 90 K 2-MeTHF glass results in rapid IR and UV-vis spectral changes, and secondary photoproduct formation complicates the spectra at low extents (<5%) of photochemical conversion. At <2% conversion, IR spectral changes show decline of absorption for Ru₃(CO)₁₂, growth of absorption at 2132 cm⁻¹ associated with free CO in the glass, and growth of a number of terminal CO features in the region where Ru₃-(CO)₁₂ absorbs. Corresponding UV-vis spectral changes show a decline in absorbance for the intense metal-centered electronic transitions of Ru₃(CO)₁₂ at 369 and 295 nm and concomitant growth of an equally intense feature which is red-shifted from the 369-nm feature and tails to wavelengths as long as 500 nm. Within experimental error, the amount of free CO detected at 2132 cm⁻¹ is consistent with the appearance of one CO for every $Ru_3(CO)_{12}$ consumed ($\epsilon_{CO} \approx 350 \text{ M}^{-1} \text{ cm}^{-1} \text{ in 2-MeTHF at } 90 \text{ K}$). Electronic spectral features suggest retention of the Ru₃ framework in the initial product. IR and UV-vis spectral changes observed for the photolysis of Ru₃(CO)₁₂ in 2-MeTHF at 90 K are very similar to those observed for the conversion of Ru₃(CO)₁₂ to Ru₃(CO)₁₁(P(OMe)₃) in alkane solution at 298 K.²³ On the basis of this characterization and reaction chemistry described below, the initially observed photoproduct in 2-MeTHF at 90 K is for-

(41) Delley, B.; Manning, M. C.; Ellis, D. E.; Berkowitz, J.; Trogler, W. C. Inorg. Chem. 1982, 21, 2247-2253.
(42) Schilling, B. E. R.; Hoffman, R. J. Am. Chem. Soc. 1979, 101,

mulated as Ru₃(CO)₁₁(2-MeTHF) with only terminal CO's, Table

Warmup to 110 K of the irradiated 90 K glass containing Ru₃(CO)₁₁(2-MeTHF) yields rapid IR and UV-vis spectral changes which persist on recooling the glass to 90 K; these same spectral changes occur slowly $(t_{1/2} \approx 1 \text{ h})$ in the dark at 90 K. The IR spectral changes show complete decline of absorptions attributed to the terminal form of Ru₃(CO)₁₁(2-MeTHF), growth of a prominent bridging absorption (1831, 1824 cm⁻¹), and growth of a new set of terminal carbonyl features in the region where Ru₃(CO)₁₂ absorbs. Regeneration of Ru₃(CO)₁₂ is not detected. Corresponding UV-vis spectral changes correlate growth of the bridging CO feature with growth of an intense electronic absorption feature at 380 nm. Importantly, the amount of photoejected CO (2132 cm⁻¹) remains unchanged during the 110 K excursion, consistent with retention of 11 CO's in the new product. The bridging CO features suggest more than one ketonic or semibridging CO, while the electronic spectral features suggest retention of the Ru₃ framework in the new product. The IR spectral features suggest a similar structure for the CO-bridged product in 2-MeTHF and for Ru₃(CO)₁₁ in MCH, but the bridging CO feature shifts to lower energy in 2-MeTHF. We tentatively formulate the CO-bridged product in 2-MeTHF as coordinatively unsaturated Ru₃(CO)₁₁, Table I, which is structurally related to CO-bridged Ru₃(CO)₁₁ in MCH. Due to the small sample thickness (2-MeTHF is less transparent than MCH in the CO stretching region, where reaction progress is conveniently monitored) and low extents of photochemical conversion in 2-MeTHF vs. MCH, a weak, low-energy, electronic transition for Ru₃(CO)₁₁ in 2-MeTHF would go undetected unless it were considerably more intense than the 518-nm feature observed for Ru₃(CO)₁₁ in MCH. Since no such feature is detected in 2-MeTHF, we cannot rule out the possible coordination of solvent and formulation of the CO-bridged product in 2-MeTHF as a bridged form of coordinatively saturated Ru₃(CO)₁₁(2-MeTHF).

Brief (30 s) near-UV irradiation of the 90 K 2-MeTHF glass containing photoejected CO, CO-bridged Ru₃(CO)₁₁, and unreacted Ru₃(CO)₁₂ yields IR spectral changes consistent with additional conversion (2%) of more Ru₃(CO)₁₂ to the terminal form of Ru₃(CO)₁₁(2-MeTHF), without change in the spectral features for the CO-bridged Ru₃(CO)₁₁. Subsequent excursion to 110 K again accelerates the conversion of terminal Ru₃-(CO)₁₁(2-MeTHF) to CO-bridged Ru₃(CO)₁₁. Thus, accumulation of larger quantities of CO-bridged Ru₃(CO)₁₁ can be achieved by successive application of this procedure.

The Ru₃(CO)₁₁(2-MeTHF) and CO-bridged Ru₃(CO)₁₁ products do not accumulate during continuous near-UV irradiation of Ru₃(CO)₁₂ in a 90 K 2-MeTHF glass. After 5% photochemical conversion of Ru₃(CO)₁₂ at 90 K, there is IR spectral evidence for the accumulation of secondary photoproducts associated with loss of additional CO from terminal Ru₃(CO)₁₁(2-MeTHF). Eventually, up to three molecules of CO can be photoejected into the glass (2132 cm⁻¹) for every molecule of Ru₃(CO)₁₂ initially consumed. The accumulation of CO-bridged Ru₃(CO)₁₁ is never observed under these conditions, suggesting that the conversion of terminal Ru₃(CO)₁₁(2-MeTHF) to CO-bridged Ru₃(CO)₁₁ is not competitive with photochemical loss of CO from terminal Ru₃(CO)₁₁(2-MeTHF) in a 2-MeTHF glass. IR spectral features for secondary and tertiary photoproducts are not well understood, but subsequent reaction chemistry for these species suggest retention of the trinuclear metal framework. Warmup to 298 K of an extensively irradiated 90 K 2-MeTHF glass containing up to three photoejected CO's per Ru₃(CO)₁₂ molecule initially present results in quantitative regeneration of Ru₃(CO)₁₂. Warmup in the presence of 10 mM PPh₃ gives a mixture of $Ru_3(CO)_{12-n}(PPh_3)_n$ (n = 1, 2, 3) complexes in competition with significant regeneration of Ru₃(CO)₁₂. Mononuclear Ru-(CO)₄(PPh₃) and Ru(CO)₃(PPh₃)₂ products are not observed after warmup. These results support formulation of the photoproducts as $Ru_3(CO)_{12-n}(2-MeTHF)_n$ complexes with intact Ru_3 cores.

Extensive irradiation of a 2-MeTHF glass containing Ru₃(CO)₁₂ and CO-bridged Ru₃(CO)₁₁ yields conversion of the Ru₃(CO)₁₂

^{3456-3467.}

to secondary and tertiary CO loss products without changing the concentration of CO-bridged Ru₃(CO)₁₁. Consistent with its formulation as a coordinatively unsaturated product in 2-MeTHF, CO-bridged Ru₃(CO)₁₁ is resistant to further photoinduced ligand loss while $Ru_3(CO)_{12}$ and the terminal form of $Ru_3(CO)_{11}(2-$ MeTHF) rapidly lose CO. These results suggest initial photogeneration of equatorially substituted Ru₃(CO)₁₁(2-MeTHF) in the 90 K 2-MeTHF glass. While electronic factors favor isomerization of equatorially substituted Ru₃(CO)₁₁(2-MeTHF) to the axially substituted form, Ru₃(CO)₁₁(2-MeTHF) instead converts to CO-bridged Ru₃(CO)₁₁. In 2-MeTHF at 90 K, Ru₃(CO)₁₁ may adopt a delocalized vacancy which cannot bind 2-MeTHF We find that the well-characterized H₂Os₃(CO)₁₀ complex^{7,43,44} does not bind 2-MeTHF at 90 or 298 K and retains the low-energy electronic feature (λ (ϵ), nm (M⁻¹ cm⁻¹): 535 (360) at 298 K; 524 (580) at 90 K in 2-MeTHF) associated with unsaturation delocalized by a four-center, 4e⁻ H₂Os₂ system. Ru₃(CO)₁₁ shows a significant selectivity for reaction with CO vs. the bulky PPh₃ ligand in alkane media. This behavior is proposed to be the consequence of delocalized unsaturation in Ru₃(CO)₁₁. Interestingly, regeneration of Ru₃(CO)₁₂ is more extensive in 2-MeTHF (80%) than in MCH (30%) for warmup of Ru₃(CO)₁₁ and photogenerated CO to 298 K in the presence of 10 mM PPh₃.

Fe₃(CO)₁₂. Near-UV irradiation of Fe₃(CO)₁₂ in a 90 K 2-MeTHF glass yields clean FTIR and UV-vis spectral changes which, unlike Ru, occur in constant ratio for significant extents (50%) of conversion and are consistent with photogeneration of the corresponding Fe₃(CO)₁₁(2-MeTHF) complex, Table I. This product, exhibiting two prominent absorptions at 1835 and 1783 cm⁻¹, is spectroscopically unrelated to CO-bridged Ru₃(CO)₁₁ in 2-MeTHF or Fe₃(CO)₁₁ in MCH and is perhaps related to the C_{2v} isomer of Fe₃(CO)₁₂ by substitution of 2-MeTHF for a terminal CO. The Fe₃(CO)₁₁(2-MeTHF) complex is spectroscopically distinct from the Fe₃(CO)₁₁(η^2 -alkene) complexes, suggesting substitution at a different coordination site. Prolonged irradiation of Fe₃(CO)₁₁(2-MeTHF) in 2-MeTHF at 90 K yields photoejection of additional CO (2132 cm⁻¹) and the accompanying formation of FTIR detected (but unidentified) secondary photoproducts.

B. Long Wavelength Photochemistry of $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$. (i) Associative Photosubstitution of $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$ at 90 K. Having established the thermal reactivity of photogenerated $Ru_3(CO)_{11}$ (M = Ru, Fe) with CO, N_2 , and C_2H_4 under kinetically controlled conditions in MCH glasses according to eq 3, we now consider the relative importance of dissociative CO loss vs. associative bimolecular photoreactions of $Ru_3(CO)_{12}$ in 90 K MP glasses, where these same entering groups can diffuse with similar relative mobilities (they all have the same molecular weight). Two important points are worth noting in these 90 K glasses: (i) photofragmentation products are never observed after prolonged irradiation and (ii) long wavelength (λ = 366- or 436-nm) photoexcitation of $Ru_3(CO)_{12}$ yields ¹³CO exchange and C_2H_4 substitution but not N_2 substitution.

At 90 K, the first electronic absorption for $Ru_3(CO)_{12}$ (centered at 369 nm) is fairly well resolved from higher energy features. Excitation (366- or 436-nm) into this absorption yields negligible photochemistry in (a) an MCH glass, (b) an N_2 -containing MP glass, and (c) a 2-MeTHF glass but rapidly yields $Ru_3(CO)_{11}$ - (η^2 -alkene) complexes in (d) a C_2H_4 -saturated MP glass or (e) a 1-pentene glass and yields $Ru_3(CO)_{12-n}(^{13}CO)_n$ complexes in (f) a ^{13}CO -saturated MP glass, as determined by FTIR. Irradiation (313-nm) of $Ru_3(CO)_{12}$ yields $Ru_3(CO)_{11}$ in glass (a) and $Ru_3(CO)_{11}$ (L = N_2 , 2-MeTHF, C_2H_4 , C_3H_{10} , and ^{13}CO , respectively) complexes in glasses (b)–(f). Glasses (a)–(e) were irradiated identically with appropriately filtered light, and percent conversions, measured by FTIR spectroscopy, vary linearly with irradiation time at small extents (<10%) of photochemical con-

Table II. Wavelength Dependent Disappearance Rates for Photoexcited $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$

a. Normalized Disappearance Rates (% Decline) for 5 min of Filtered or Broad Band (Quartz) Irradiation of Ru₃(CO)₁₂ and Fe₃(CO)₁₂ at 90 K^a

	normalized % decline ^b					
filter	(a) MCH	(b) MP/N ₂	(c) 2-MeTHF	(d) MP/C ₂ H ₄	(e) 1-pentene	
		Ru	3(CO) ₁₂			
436 nm	<0.01	<0.01	<0.01	3 (1)	9 (2)	
366 nm	0.02(1)	0.02(1)	0.03(1)	6(1)	19 (3)	
quartz	8 (2)	8 (2)	14 (3)	15 (3)	25 (5)	
		Fea	(CO) ₁₂			
436 nm	0.10 (5)		0.10 (5)		5 (1)	
Pyrex ^c	8 (2)		8 (2)		13 (2)	

b. Previously Reported Quantum Yields for Photofragmentation (Φ_f) and Photosubstitution (Φ_s) of $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$ in Octane Solution at 298 K

λ (nm)	conditions	$\Phi_{\rm f} \times 10^3$	$\Phi_{\rm s} \times 10^3$	ref
	Ru ₃ (C	(O) ₁₂		
405	1 atm Ar	<0.1		21
405	0.012 M CO	28 ± 4		21
405	0.05 M C ₂ H ₄	51 ± 5		21
405	$0.012 \text{ M P}(OMe)_3$	23 ± 1		23
366	0.12 M P(OMe),	25 ± 1	34 ± 1	23
334	0.12 M P(OMe) ₃	21 ± 1	68 ± 8	23
313	0.12 M P(OMe)_3	24 ± 2	86 ± 3	23
	Fe ₃ (C	(O) ₁₂		
633	0.001 M PPh ₃	10		3

 a MCH = methylcyclohexane; MP = 3-methylpentane. The only product observed is $M_3(CO)_{11}L$ (L = MCH, N_2 , 2-MeTHF, C_2H_4 , C_5H_{10}). b Numbers in parentheses represent uncertainty in the least significant digit. c Pyrex transmits light of $\lambda > 280$ nm.

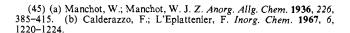
version. Percent conversions $[C_i(\lambda)]$, normalized to 5 min of irradiation, are reported in Table II.

The photoreaction efficiencies are the same in glasses (a) and (b) suggesting that Ru₃(CO)₁₁(N₂) formation in glass (b) is completely accounted for by the intermediacy of photogenerated Ru₃(CO)₁₁. Importantly, the C₂H₄ concentration (50 mM) in glass (d) is estimated to be about 10 times greater than the N₂ concentration (5 mM) in glass (b).25 However, a concentration dependence alone is insufficient to account for the wavelengthdependent ratio of photosubstitution efficiencies (C_d/C_b (436 nm) > 300; C_d/C_b (366 nm) > 300; C_d/C_b (broad band) < 2) in these two glasses. These results suggest that low-energy excitation of Ru₃(CO)₁₂ generates a reactive isomer or excited state of Ru₃- $(CO)_{12}$ which is trapped by C_2H_4 (and not by N_2) via an associative substitution pathway, while broad band excitation increases the efficiency for accumulation of Ru₃(CO)₁₁ as an intermediate in dissociative photosubstitution. The long wavelength photosubstitution pathway is important in a neat 1-pentene glass (e) $(C_e/C_a (436 \text{ nm}) > 1000, C_e/C_a (366 \text{ nm}) > 1000)$ but not in a neat 2-MeTHF glass (c) $(C_c/C_a (366 \text{ nm}) = 1.5)$, Table II. Loss of CO becomes more competitive for broad band irradiation $(C_e/C_c$ (broad band) < 2). With broad band irradiation, photosubstitution in a 2-MeTHF glass (c) is nearly twice as efficient as $Ru_3(CO)_{11}$ or $Ru_3(CO)_{11}(N_2)$ accumulation in the alkane glasses ((a) and (b), respectively), perhaps reflecting a change in the net cage escape efficiency for photoejected CO in the 2-MeTHF medium. The long wavelength photosubstitution of alkene for CO is 3 times more efficient in 1-pentene (e) than in C₂H₄-saturated MP (d) at 90 K, likely a consequence of larger alkene concentration in (e).

Long wavelength ($\lambda > 540$ nm) excitation into the first electronic absorption of Fe₃(CO)₁₂ (centered at 605 nm) yields no net photochemistry in alkane, 1-pentene, or 2-MeTHF glasses at 90 K. With 436-nm excitation, photoconversion in a neat 1-pentene glass (to form Fe₃(CO)₁₁(η^2 -C₅H₁₀)) is rapid on the time scale necessary to observe inefficient photoconversion in MCH (to form Fe₃(CO)₁₁) or 2-MeTHF (to form Fe₃(CO)₁₁(2-

^{(43) (}a) Shapley, J. R.; Keister, J. B.; Churchill, M. R.; DeBoer, B. G. J. Am. Chem. Soc. 1975, 97, 4145-4145. (b) Broach, R. W.; Williams, J. M. Inorg. Chem. 1979, 18, 314-319.

⁽⁴⁴⁾ Deeming, A. J.; Hasso, S. J. Organomet. Chem. 1976, 114, 313-324.


MeTHF)) glasses, Table II. Pyrex-filtered irradiation yields similar photoconversion efficiencies for Fe₃(CO)₁₂ in all three glasses.

The wavelength- and medium-dependent photoconversion efficiencies for $F_{3}(CO)_{12}$ and $Ru_{3}(CO)_{12}$ at 90 K are clearly related. Selective irradiation into the second (first) electronic absorption for $F_{3}(CO)_{12}$ ($Ru_{3}(CO)_{12}$) enables associative photosubstitution by 1-pentene and not 2-MeTHF, whereas higher energy excitation is required to generate $M_{3}(CO)_{11}$ (M = Fe, Ru) in MCH. Clearly, the associative substitution pathway is favored for strong π -acceptor ligands as entering groups.

(ii) The Quenching of Photofragmentation of Ru₃(CO)₁₂ and $Fe_3(CO)_{12}$ at 90 K. The $Ru_3(CO)_{12}$ and $Fe_3(CO)_{12}$ complexes are known to undergo long wavelength photofragmentation in fluid solutions. However, attempts to observe photofragmentation of these clusters in rigid alkane glasses at 90 K have been without success. Near-UV irradiation of a 90 K MP glass containing ~0.1 mM Ru₃(CO)₁₂ or \sim 0.02 mM Fe₃(CO)₁₂ and \sim 10 mM free CO results in spectral changes identical with those observed in the absence of CO, yet limited conversion to the bridged form of $M_3(CO)_{11}$ results due to creation of a photostationary state which is a function of CO concentration (measured at 2132 cm⁻¹) and light intensity. Prolonged broad band irradiation with a 450-W medium pressure Hg lamp for 6 h maintains these photostationary states and leads to no additional spectral changes. In the dark, Ru₃(CO)₁₂ and Fe₃(CO)₁₂ are rapidly and quantitatively regenerated. Brief (<15 min) near-UV irradiation of $M_3(CO)_{12}$ (M = Ru, Fe) in ¹³CO-containing MP glasses at 90 K yields rapid IR spectral changes consistent with accumulation of as many as eight photoejected ¹²CO's per M₃(CO)₁₂ molecule initially present. In the dark, the UV-vis spectra return to coincidence with those obtained for the glass prior to irradiation. The final absorbance changes at 2132 cm⁻¹ (generation of ¹²CO) and at 2085 cm⁻¹ (consumption of ¹³CO) are of equal magnitude, suggesting that the extinction coefficients for ¹²CO and ¹³CO differ by less than 5% in MP at 90 K.

Near-UV irradiation of 0.1 mM Ru₃(CO)₁₂ or 0.02 mM Fe₃(CO)₁₂ in C₂H₄-saturated MP glasses at 90 K yields IR spectral changes consistent with rapid formation of Ru₃(CO)₁₁(C₂H₄) or Fe₃(CO)₁₁(C₂H₄), respectively. Prolonged irradiation yields secondary photoproducts associated with the photoejection of additional CO (2132 cm⁻¹). Similar behavior is observed for irradiation of M₃(CO)₁₂ (M = Ru, Fe) in neat 1-pentene glasses at 90 K. Mononuclear M(CO)_{5-n}(η^2 -alkene)_n (M = Ru, Fe; n = 1-4) complexes²⁹ are never detected, again suggesting that photofragmentation is completely suppressed at 90 K. Secondary photoproducts are not observed during similar prolonged irradiation necessary to completely convert Ru₃(CO)₁₂ to Ru₃-(CO)₁₁(N₂) in an N₂-containing MP glass.

(iii) Solution Photochemistry of Ru₃(CO)₁₂ in Alkane Media at 195 K. Long wavelength ($\lambda = 436$ -nm) photoexcitation of Ru₃(CO)₁₂ in CO- or C₂H₄-saturated isooctane solutions at 298 K yields 3 equiv of $Ru(CO)_5$ or $Ru(CO)_4(C_2H_4)$, respectively, in accord with previous reports. 16 When these irradiated solutions are purged with Ar, Ru₃(CO)₁₂ is quantitatively regenerated in accord with the known lability of Ru(CO)₅⁴⁵ and Ru(CO)₄(C₂-H₄).^{16,29} Photofragmentation quantum yields have previously been reported, Table II,²¹ for 405-nm excitation of Ru₃(CO)₁₂ in octane solutions under 1 atm CO ([CO] = 0.012 M; Φ_f = 0.028 ± 4) or C₂H₄ ([C₂H₄] = 0.05 M; Φ_f = 0.051 ± 5). For solutions prepared under an Ar atmosphere, long wavelength photoexcitation yields Ru(CO)₅ at 298 K, but fragmentation yields are several orders of magnitude smaller, Table II. Long wavelength ($\lambda >$ 420-nm) irradiation of Ru₃(CO)₁₂ in CO- or C₂H₄-saturated alkane solutions at 195 K enables detection of dinuclear intermediates associated with the fragmentation reactions of Ru₃-(CO)₁₂. Importantly, Ru₃(CO)₁₂ exhibits negligible photochemistry in Ar-purged isooctane solutions at 195 K.

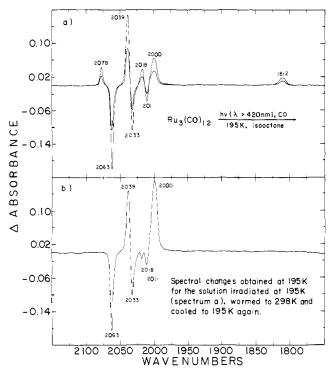


Figure 4. (a) IR difference spectral changes obtained after 20 and 40 min of long wavelength ($\lambda > 420$ -nm) irradiation of 0.2 mM Ru₃(CO)₁₂ in a CO-saturated isooctane solution at 195 K. The negative absorbance changes are associated with consumption of Ru₃(CO)₁₂, while positive absorbances changes are attributed to Ru(CO)₅ [ν (cm⁻¹) = 2037, 2000 in isooctane at 195 K] and Ru₂(CO)₉ [ν (cm⁻¹) = 2078, 2039, 2029, 2018, 2006, 1812 in isooctane at 195 K]. (b) The IR difference spectrum was obtained at 195 K for the solution irradiated at 195 K (spectrum a), warmed to 298 K, and recooled to 195 K. Negative deviations are associated with irreversibly consumed Ru₃(CO)₁₂, while positive deviations are attributed to Ru(CO)₅.

Long wavelength ($\lambda > 420$ -nm) photoexcitation of ~ 0.2 mM Ru₃(CO)₁₂ in a CO-saturated isooctane solution at 195 K yields clean FTIR spectral changes shown in Figure 4a. The IR spectral changes in Figure 4a show decline of absorption for Ru₃(CO)₁₂ (ν (ϵ), cm⁻¹ (M⁻¹ cm⁻¹); 2063 (33500), 2031 (24500), 2017 (5000), 2011 (11000) in isooctane at 195 K), growth of a prominent absorption at 1812 cm⁻¹, and growth of a number of bands in the region where Ru₃(CO)₁₂ absorbs. Photochemical consumption of Ru₃(CO)₁₂ can be determined quantitatively by monitoring at 2063 cm⁻¹, where product features do not absorb. The time evolution of these photoproduct absorptions is consistent with initial photoproduction of equal amounts of Ru(CO)₅ (ν (ϵ), cm⁻¹ (M⁻¹ cm⁻¹); 2037 (9300), 2000 (10400) in isooctane at 195 K) and Ru₂(CO)₉ (ν (ϵ), cm⁻¹ (M⁻¹ cm⁻¹); 2078 (7500), 2039 (20500), 2029 (5100), 2018 (10000), 2006 (2100), 1812 (3300) in isooctane at 195 K) according to eq 4. Inefficient photo-

$$Ru_3(CO)_{12} \xrightarrow{h\nu (\lambda > 420 \text{ nm}), CO} Ru(CO)_5 + Ru_2(CO)_9$$
 (4)

fragmentation of photogenerated $Ru_2(CO)_9$ leads to a small increase in the $Ru(CO)_5$ product yield from 1.0 to 1.1 during 40 min of $\lambda > 420$ -nm irradiation at 195 K, Figure 4a. The $Ru(CO)_5$ complex does not absorb appreciably at $\lambda > 420$ nm, and higher energy excitation is required to inefficiently yield $Ru_2(CO)_9$ and some $Ru_3(CO)_{12}$ from 195 K irradiation of independently prepared $Ru(CO)_5$ -containing solutions. These results for $Ru(CO)_5$ accord well with a previous report which attributes spectral features at 2078, 2039, and 1812 cm⁻¹ to photogenerated $Ru_2(CO)_9$. Thus, $Ru_2(CO)_9$ appears to be a direct product of long wavelength photoexcitation of $Ru_3(CO)_{12}$ in CO-saturated alkane solution at 195 K. Warmup to 298 K of the irradiated 195 K solution

⁽⁴⁶⁾ Moss, J. R.; Graham, W. A. G. J. Chem. Soc., Dalton Trans. 1977, 95-99.

yields IR spectral changes which persist on recooling the solution to 195 K, Figure 4b, consistent with \sim 6% regeneration of Ru₃-(CO)₁₂ (2063 cm⁻¹) and conversion of Ru₂(CO)₉ (1812 cm⁻¹) to Ru(CO)₅ (2000 cm⁻¹). Subsequent purging with Ar at 298 K quantitatively regenerates Ru₃(CO)₁₂, establishing a quantitative spectroscopic yield of Ru(CO)₅ in Figure 4b and in turn establishing the initial photogeneration of one molecule of Ru(CO)₅ (determined at 2000 cm⁻¹) for every molecule of Ru₃(CO)₁₂ consumed (determined at 2063 cm⁻¹) in the original 195 K irradiation (Figure 4a). Deconvolution of IR spectral features for Ru₃(CO)₁₂ and Ru(CO)₅ in Figure 4a enables clean resolution of the remaining product features associated with photogenerated Ru₂(CO)₉. The IR spectral features for Ru₂(CO)₉ establish, for the first time, that Ru₂(CO)₉ is isostructural with Os₂(CO)₉, ⁴⁶ clearly ruling out an Fe₂(CO)₉-type structure.

In a C_2H_4 -saturated solution at 195 K, long wavelength ($\lambda > 420$ nm) photoexcitation of ~ 0.2 mM $Ru_3(CO)_{12}$ yields FTIR spectral changes, presented as Supplementary Material. The growth of a bridging CO feature at 1805 cm⁻¹ is accompanied by the growth of terminal CO features in the region of declining spectral features for $Ru_3(CO)_{12}$. The ratio of intensities of the product spectral features changes during the irradiation, thus enabling distinction of IR spectral features for $Ru(CO)_4(C_2H_4)$ (ν (ϵ); cm⁻¹ (M⁻¹ cm⁻¹): 2106 (1200), 2024 (14000), and 1996 (7500) in isooctane at 195 K) and a CO-bridged product (ν (rel abs); cm⁻¹: 2114 (0.03), 2109 (0.03), 2065 (2.2), 2030 (5.2), 2017 (3.7), 2004 (2.0), 1805 (1.0)). During 12 min of irradiation, the spectroscopic yield of $Ru(CO)_4(C_2H_4)$ increases from 1.0 to 1.2 at the expense of product features for the CO-bridged product.

Warmup to 298 K of the irradiated 195 K solution yields IR spectral changes which persist on recooling and which remain unchanged in the dark at 195 K, consistent with 44% regeneration of $Ru_3(CO)_{12}$ and conversion of remaining CO-bridged product to $Ru(CO)_4(C_2H_4)$. Warmup to 298 K eventually regenerates $Ru_3(CO)_{12}$ quantitatively, establishing a quantitative spectroscopic yield for $Ru(CO)_4(C_2H_4)$. These stoichiometric considerations suggest (i) formulation of the CO-bridged product as Ru_2 - $(CO)_8(C_2H_4)$, Table I, and (ii) long wavelength 195 K photofragmentation of $Ru_3(CO)_{12}$ according to eq 5. The $Ru_2(C-O)_8(C_2H_4)$ fragments in C_2H_4 -saturated alkane solutions at 195 K according to eq 6. Pyrex-filtered ($\lambda > 280$ -nm) irradiation

K according to eq 6. Pyrex-filtered (
$$\lambda > 280$$
-nm) irradiation
$$Ru_3(CO)_{12} \xrightarrow{h\nu (\lambda > 420 \text{ nm}), C_2H_4} Ru_2(CO)_8(C_2H_4) + Ru(CO)_4(C_2H_4) (5)$$

$$h\nu, C_3H_4$$

$$Ru_2(CO)_8(C_2H_4) \xrightarrow{h\nu, C_2H_4} 2Ru(CO)_4(C_2H_4)$$
 (6)

of another aliquot of the same solution yields IR spectral changes consistent with the additional accumulation of $Ru_3(CO)_{11}(C_2H_4)$, Table I, as an additional photoproduct at 195 K. $Ru_3(CO)_{11}(C_2H_4)$ slowly reacts with liberated CO to regenerate $Ru_3(CO)_{12}$ in the dark at 195 K.

Long wavelength ($\lambda > 420$ -nm) photoexcitation of Ru-(CO)₄(C₂H₄) (there is negligible absorption at such wavelengths) in an independently prepared C₂H₄-saturated solution at 195 K yields no net chemistry while higher energy excitation yields stable solutions of Ru(CO)₃(C₂H₄)₂ and eventually *trans*-Ru(CO)₂-(C₂H₄)₃.²⁹ The 1805-cm⁻¹ feature for Ru₂(CO)₈(C₂H₄) is never observed during such irradiations. The IR spectral features for Ru₂(CO)₈(C₂H₄) are different from those for Os₂(CO)₈(μ - η^1,η^1 -H₂CCH₂).⁴⁷ Ru₂(CO)₈(C₂H₄) may be structurally related to Ru₂(CO)₉ by replacement of one terminal CO ligand by C₂H₄. Attempts to characterize Ru₂(CO)₈(C₂H₄) by ¹H NMR spectroscopy at 195 K have been unsuccessful.

Long wavelength ($\lambda = 436$ -nm) photoexcitation of ~ 0.2 mM Ru₃(CO)₁₂ in a PPh₃-containing isooctane solution at 298 K initially yields (<5% conversion) 2.6 Ru(CO)₄(PPh₃) and 0.4 Ru(CO)₃(PPh₃)₂ as the only FTIR detected photoproducts, independent of PPh₃ concentration (1-100 mM). Ru₃(CO)₁₁(PPh₃)

is observed as an additional product of 313- or 366-nm excitation. Photofragmentation quantum yields are reportedly insensitive to irradiation wavelength, while competitive photosubstitution quantum yields increase with increasing excitation energy, Table II.²³

Long wavelength ($\lambda > 420$ -nm) irradiation of 0.2 mM Ru₃-(CO)₁₂ in a PPh₃-containing isooctane solution at 195 K yields initial formation of a CO-bridged (1791 cm⁻¹) intermediate X, Table I. In the dark at 195 K, spectral features for both Ru₃-(CO)₁₁(PPh₃) and Ru₃(CO)₁₂ grow at the expense of those for intermediate X, in a ratio which increases with increasing PPh₃ concentration. These results suggest retention of the Ru_3 core in intermediate X. As the 195 K irradiation proceeds, the relative yield of this initially observed intermediate declines in apparent correlation with an increase, from initial values near zero, in the relative yields of Ru(CO)₄(PPh₃), Ru(CO)₃(PPh₃)₂, and predominantly Ru₃(CO)₁₁(PPh₃). Continued irradiation eventually yields decline of Ru₃(CO)₁₁(PPh₃), an increase in the Ru-(CO)₃(PPh₃)₂/Ru(CO)₄(PPh₃) product ratio from an initial value of ~0.15, and corresponding generation of a second CO-bridged (1768 cm⁻¹) intermediate. Warmup to 298 K of the irradiated 195 K solutions leads to a complete decline of the two bridging carbonyl features, significant regeneration of Ru₃(CO)₁₂, retention (low [PPh₃]) or partial decline (high [PPh₃]) in the spectroscopic yield of Ru₃(CO)₁₁(PPh₃), and generation of more Ru(CO)₄(PPh₃) and $Ru(CO)_3(PPh_3)_2$. The $Ru(CO)_3(PPh_3)_2/Ru(CO)_4(PPh_3)$ product ratio always increases during the warmup but never exceeds a ratio of 0.5. Greater accumulation of the second CObridged photoproduct (1768 cm⁻¹) at 195 K leads to higher yields of Ru(CO)₃(PPh₃)₂ on warmup to 298 K. Low concentrations of PPh₃ and low extents of conversion at 195 K both contribute to more efficient regeneration of Ru₃(CO)₁₂ during warmup, due to back reaction of intermediate X (1791 cm⁻¹). In summary, long wavelength photoexcitation of Ru₃(CO)₁₂ in a PPh₃-containing alkane solution at 195 K appears to yield an unidentified Ru₃ species. Fragmentation products in the presence of PPh₃ result only from secondary reactions.

(iv) Solution Photochemistry of Fe₃(CO)₁₂. Previous reports have established that low-energy visible light excitation of Fe₃- $(CO)_{12}^{27}$ yields extraordinarily fast 1-pentene isomerization. These reports have prompted a more detailed investigation of the products of fragmentation of Fe₃(CO)₁₂ in alkane solutions containing excess C_2H_4 . Long wavelength photoexcitation ($\lambda > 540$ nm) of Fe₃(CO)₁₂ in a CO-saturated MP solution at 298 K yields IR spectral changes consistent with quantitative photoconversion to 3 equiv of Fe(CO)₅. Similar irradiation of 0.2 mM Fe₃(CO)₁₂ in a PPh₃-containing MP solution at 298 K yields spectral changes consistent with photoconversion to a mixture of Fe(CO)₅, Fe-(CO)₄(PPh₃), Fe(CO)₃(PPh₃)₂, and minor amounts of Fe₃-(CO)₁₁(PPh₃). Photogenerated Fe₃(CO)₁₁(PPh₃) fragments in the dark at 298 K to yield additional Fe(CO)₄(PPh₃) and Fe-(CO)₃(PPh₃)₂ but not Fe(CO)₅. At high concentrations of PPh₃ (0.1 M), Fe₃(CO)₁₁(PPh₃) is not detected, and photofragmentation product distributions are as indicated in eq 7. Photofragmentation

Fe₃(CO)₁₂
$$\xrightarrow{h_{\nu} (\lambda > 540 \text{ nm}), \text{ PPh}_3}$$

0.7Fe(CO)₅ + 1.2Fe(CO)₄(PPh₃) + 1.1Fe(CO)₃(PPh₃)₂ (7)

quantum yields have been reported, Table II, for 633-nm irradiation of $Fe_3(CO)_{12}$ in isooctane solutions containing 1 mM PPh₃ ($\Phi_f = 0.01$). While $\lambda > 540$ -nm irradiation of $Fe_3(CO)_{12}$ in PPh₃-containing solutions at 195 K yields the same mononuclear products observed at 298 K, $Fe_3(CO)_{11}(PPh_3)$ is also accumulated in >20% yield. Furthermore, mononuclear product features decline, and the ratio of absorbance changes at 2086 cm⁻¹ (production of $Fe_3(CO)_{11}(PPh_3)$) and 2047 cm⁻¹ ($Fe_3(CO)_{12}$ consumption) increases with decreasing irradiation wavelength for 436-, 366-, and 313-nm irradiation. In summary, the $Fe(CO)_5$, $Fe(CO)_4(PPh_3)$, and $Fe(CO)_3(PPh_3)_2$ complexes form by direct photofragmentation of $Fe_3(CO)_{12}$, while $Fe(CO)_4(PPh_3)$ and $Fe(CO)_3(PPh_3)_2$ are additionally formed by fragmentation of photogenerated $Fe_3(CO)_{11}(PPh_3)$. Importantly, $Fe(CO)_5$ is not

⁽⁴⁷⁾ Motyl, K. M.; Norton, J. R.; Schauer, C. K.; Anderson, O. P. J. Am. Chem. Soc. 1982, 104, 7325-7327.

formed when photogenerated Fe₃(CO)₁₁ is warmed to 298 K in the presence of PPh₃.

Long wavelength ($\lambda > 540$ nm) excitation of Fe₃(CO)₁₂ in a C₂H₄-saturated MP solution at 298 K yields clean IR spectral changes presented as Supplementary Material. All absorbance changes occur in constant ratio throughout the photoconversion and are subsequently persistent in the dark for several hours. The IR spectral changes show decline of absorption features for Fe₃(CO)₁₂ and growth of prominent new features at 2088, 2023, 2008, 2001, and 1984 cm⁻¹. Similar IR spectral changes accompany $\lambda > 540$ -nm excitation of Fe₃(CO)₁₂ in a C₂H₄-saturated CF₃C₆F₁₁ solution at 298 K. Corresponding ¹H NMR spectral changes (C₇H₁₄ used at internal standard: 1.54 ppm vs. SiMe₄) in CF₃C₆F₁₁ indicate growth of two prominent singlets in a constant 1:2 ratio of integrated intensities at 2.37 (Fe(CO)₄(C₂H₄)) and 2.68 (Fe(CO)₃(C₂H₄)₂) ppm vs. SiMe₄. Corresponding UV-vis spectral changes indicate complete decline of intense low-energy electronic spectral features for Fe₃(CO)₁₂ at 602, 437 (sh), and 360 nm (sh). No new low-energy electronic features grow in for the accumulated photoproducts suggesting complete fragmentation of the Fe₃ core of Fe₃(CO)₁₂ to yield mononuclear products. The 2023- and 2001-cm⁻¹ product features indicate formation of Fe(CO)₅ [IR (MP, 298 K) ν (ϵ), cm⁻¹ (M⁻¹ cm⁻¹) 2023 (10 000), 2001 (14 300)]. The product features at 2088 and 2008 cm⁻¹ and 2.37 ppm are due to formation of $Fe(CO)_4(C_2H_4)$ [IR (MP, 298 K) ν (ϵ), cm⁻¹ (M⁻¹ cm⁻¹) 2088 (1700), 2014 sh, 2008 (12800), 1986 (8400); ¹H NMR (250 MHz, CF₃C₆F₁₁, 298 K) 2.37 (s)], while the product feature at 2.68 ppm indicates formation of Fe(CO)₃(C₂H₄)₂ [IR (MP, 298 K) ν (ϵ), cm⁻¹ (M⁻¹ cm⁻¹) 2060 (940), 1990 (5100), 1983 (12600); ¹H NMR (250 MHz, $CF_3C_6F_{11}$, 298 K) 2.68 (s)].²⁹

The IR difference spectral changes for the photofragmentation of Fe₃(CO)₁₂ in C₂H₄-saturated MP were simulated, Figure 5, by optimization of the coefficients of digital summation of independently generated FTIR spectra for each component in the MP mixture. Extinction coefficients for Fe₃(CO)₁₂ and Fe(CO)₅ were determined by direct methods and shown to be self-consistent by comparison to IR spectral changes accompanying the long wavelength ($\lambda > 540$ -nm) photoconversion of Fe₃(CO)₁₂ quantitatively to Fe(CO)₅ in a CO-saturated MP solution at 298 K. Clean solutions of Fe(CO)₄(C₂H₄) were prepared by irradiating $Fe(CO)_5$ in a C_2H_4 -saturated solution and then purging the solution with CO. Irradiation of $Fe(CO)_4(C_2H_4)$ in a C_2H_4 -purged MP solution initially yields $Fe(CO)_3(C_2H_4)_2$, a reaction which is reversed under CO. 29 Quantitation of IR spectral changes for the net conversion of $Fe(CO)_5$ to $Fe(CO)_4(C_2H_4)$ and for the reversible interconversion of $Fe(CO)_3(C_2H_4)_2$ and $Fe(CO)_4(C_2H_4)$ allows estimation of extinction coefficients for $Fe(CO)_3(C_2H_4)_2$ and Fe(CO)₄(C₂H₄) based on the extinction coefficients for Fe-(CO)₅. Relative molar absorptivities obtained by FTIR spectroscopy for $Fe_3(CO)_{12}$, $Fe(CO)_4(C_2H_4)$, $Fe(CO)_5$, and Fe-(CO)₃(C₂H₄)₂ in independently prepared MP solutions at 298 K have been multiplied by optimized stoichiometric coefficients (-1.00, 0.97, 1.01, 0.98, respectively) to yield weighted relative molar absorptivities shown in Figure 5a, such that digital summation yields a simulated IR difference spectrum (Figure 5b) which is virtually indistinguishable from that obtained experimentally at low (3%) extent photochemical conversion of Fe₃(C-O)₁₂ to the mononuclear products (Figure 5c). With a stoichiometric coefficient of -1.00 for Fe₃(CO)₁₂, the remaining coefficients were determined by serially optimizing the fit at 2088, 2023 or 2001, and 1984 cm^{-1} for $Fe(CO)_4(C_2H_4)$, $Fe(CO)_5$, and $Fe(CO)_3(C_2H_4)_2$, respectively. The optimized stoichiometric coefficients account for 99% of the Fe₃(CO)₁₂ consumed during irradiation and agree with the ¹H NMR data, which also indicate photogeneration of $Fe(CO)_4(C_2H_4)$ and $Fe(CO)_3(C_2H_4)_2$ in a 1:1 molar ratio. In summary, long wavelength photofragmentation of Fe₃(CO)₁₂ proceeds according to eq 8 in C₂H₄-saturated alkane

Fe₃(CO)₁₂
$$\xrightarrow{h\nu \ (\lambda > 540 \text{ nm}), C_2H_4}$$

Fe(CO)₅ + Fe(CO)₄(C₂H₄) + Fe(CO)₃(C₂H₄)₂ (8)

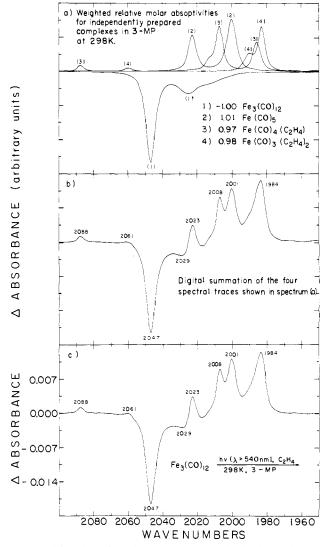


Figure 5. (a) Weighted relative molar absorptivities for (1) $Fe_3(CO)_{12}$, (2) $Fe(CO)_5$, (3) $Fe(CO)_4(C_2H_4)$, and (4) $Fe(CO)_3(C_2H_4)_2$ in independently prepared MP solutions at 298 K. The optimized stoichiometric coefficients shown were chosen such that the digital summation of these four spectral traces yields the simulated IR difference spectrum (b) which is in closest agreement with the experimentally obtained IR difference spectral changes (c) associated with long wavelength ($\lambda > 540$ -nm) irradiation (3% conversion) of Fe₃(CO)₁₂ in a C₂H₄-saturated MP solution at 298 K.

solutions at 298 K. Competitive photosubstitution also yields Fe₃(CO)₁₁(C₂H₄) at 195 K. Consistent with results for photoreaction of Fe₃(CO)₁₂ in the presence of C₂H₄, long wavelength ($\lambda > 540$ nm) photoexcitation of 0.2 mM Fe₃(CO)₁₂ in a C₃H₆-saturated MP solution yields IR spectral changes consistent with photogeneration of nearly equal quantities of Fe(CO)5, $Fe(CO)_4(C_3H_6)$, and $Fe(CO)_3(C_3H_6)_2$.

Discussion

Structure and Reactivity of $M_3(CO)_{11}$ (M = Ru, Fe). Figure 6 summarizes our current understanding of the nature of photogenerated Ru₃(CO)₁₁, which initially adopts a structure with all terminal CO's, II, and slowly isomerizes at 90 K to a more stable, bridged form, III. The structure of III (M = Ru, Fe)cannot be determined with certainty from the available IR data but may be related to the structure presented in Figure 6. IR spectral comparison of M₃(CO)₁₁ complexes indicates that photogenerated Os₃(CO)₁₁²⁴ and Fe₃(CO)₁₁ adopt geometries closely related to those for II and III, respectively. The FTIR detected terminal form of Os₃(CO)₁₁ and the bridged form of Ru₃(CO)₁₁ both react with 13CO at 110 K quantitatively to yield axial- $^{13}CO-M_3(CO)_{11}(^{13}CO)$ complexes. These results serve to support

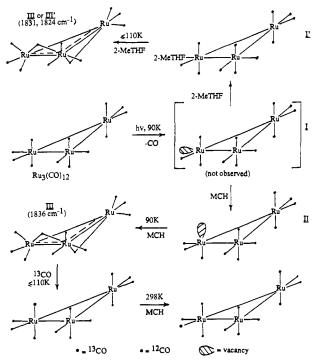


Figure 6. Summary of the structural and chemical nature of photogenerated Ru₃(CO)₁₁.

description of II (M = Os, Ru) as structurally related to $M_3(CO)_{12}$ by net creation of an axial (orthogonal to the trinuclear metal framework) vacancy. The IR spectral features support this description for axially vacant II (M = Ru, Os).²⁴ The results further suggest that an axial vacancy is retained upon isomerization of $Ru_3(CO)_{11}$ from II to III.

Detection of equatorially substituted Ru₃(CO)₁₁(2-MeTHF), I', as an intermediate leading to formation of Ru₃(CO)₁₁ in a 2-MeTHF glass suggests initial loss of equatorial CO from Ru₃(CO)₁₂ to form equatorially vacant Ru₃(CO)₁₁ (I). In the absence of a 2e- donor ligand such as 2-MeTHF, I rapidly isomerizes to II and then more slowly to III. The photodissociation of equatorial CO has been established for Os₃(CO)₁₂²⁴ by showing selective photochemical loss of ¹²CO from the axial-¹³CO-Os₃-(CO)₁₁(1³CO). For Ru, photoisomerization of the Ru₃(CO)₁₁-(13CO) isomers is rapid on the time scale necessary to observe CO loss at 90 K.

Recently, $\lambda > 315$ -nm irradiation of Ru₃(CO)₁₂ in THF solution at 298 K was shown to yield a transient, formulated as Ru₃-(CO)₁₁(THF), exhibiting UV-vis spectral features²³ very similar to those for Ru₃(CO)₁₁(2-MeTHF) (I') in 2-MeTHF at 90 K. The kinetic properties of Ru₃(CO)₁₁(THF) at 298 K²³ suggest a reversible equilibrium with Ru₃(CO)₁₁. We find for the more bulky 2-MeTHF ligand that this equilibrium favors Ru₃(CO)₁₁ (III) at 90 K. The kinetic data at 298 K further suggest that Ru₃(CO)₁₁ reacts preferentially with CO vs. the more bulky P(OCH₃)₃ or PPh₃ ligands at 298 K.²³ This behavior has been proposed²³ to be the consequence of delocalized unsaturation in Ru₃(CO)₁₁. Accordingly, we observe preferential uptake of CO vs. PPh₃ on warmup of 90 K alkane glasses containing photogenerated Ru₃(CO)₁₁, photoejected CO, and excess PPh₃. The preferential uptake of CO is even more pronounced in 2-MeTHF. For $M_3(CO)_{11}$ (III), we favor a bridging structure in which the unsaturation is delocalized. A delocalized vacancy would stabilize Ru₃(CO)₁₁ (III) in a 2-MeTHF glass as suggested by the IR spectral data.

Spectroscopic data for III indicate that more than one bridging CO is involved in delocalization of the unsaturation. Furthermore, the unsaturation is delocalized in such a fashion that III reacts with ¹³CO to yield axial-¹³CO-Ru₃(CO)₁₁(¹³CO). The structure proposed in Figure 6 for III is consistent with all of these considerations. Structure III in Figure 6 exhibits the undecacarbonyl

ligand set geometry that would obtain upon elongation of the longest Fe-C bond for the triply bridging CO in the crystallographically characterized $[Fe_3(CO)_{11}]^{2-}$ diamion.⁴⁸ The terminal $M_3(CO)_9$ ligand sets for crystallographically characterized $Ru_3(CO)_9(\mu^3-CO)(\mu^3-NR)$ complexes $[R = Ph,^{49} SiMe_3^{50}]$ are related to that for structure III and give IR spectral features similar to those observed for CO-bridged Ru₃(CO)₁₁. An attractive alternative structure for Ru₃(CO)₁₁, where the coordinative unsaturation is delocalized by having one equatorial CO bridge an edge of the metal triangle {cf. $RuCo_2(\mu\text{-CO})(CO)_{10}$, ⁵¹ Os- $Co_2(CO)_{11}$, ⁵² $[Ru_3(CO)_{11}]^{2-53}$ and $[Os_3(CO)_{11}]^{2-54}$ }, is *not* consistent with our present characterization of bridged Ru₃(CO)₁₁ since it contains only one bridging CO and is not expected to react with ¹³CO to yield axial-¹³CO-Ru₃(CO)₁₁(¹³CO).

Attempts have recently been made to explain the structures of metal carbonyl clusters in terms of packing of the CO ligands to give the lowest energy polyhedron which can accommodate the metal skeleton.55 The CO's of Fe₃(CO)₁₂ form a crystallographically characterized35 icosahedral array but are forced to adopt the less favored anticuboctahedron in Os₃(CO)₁₂⁵⁶ in order to enclose the larger Os3 triangle. IR spectral evidence for Ru₃(CO)₁₂ suggests that the Ru₃ core is capable of accommodating both ligand arrays,⁵⁷ and crystallographic data confirm anticuboctahedral and icosahedral ligand arrays in Ru₃(CO)₁₂⁵⁸ and Ru₃(CO)₁₁(CNBu^t),⁵⁹ respectively. Removal of one CO from $M_3(CO)_{12}$ (M = Ru, Os) at 90 K yields an anticuboctahedron-1 ligand array, proposed for terminal forms of Os₃(CO)₁₁ (I and II). Alternatively, removal of one CO from Fe₃(CO)₁₂ yields an icosahedral-1 ligand array proposed in structure III and observed for the structurally characterized $[Fe_3(\mu^3-CO)(\mu^2-CO)(CO)_9]^{2-}$ dianion.48 The isomerization of Ru₃(CO)₁₁ from II to III suggests a restructuring of the ligand array from anticuboctahedral-1 to a less spacious icosahedral-1 ligand array on the laboratory time scale. Alternatively, the rapid conversion from I to II is driven by electronic factors, without collapse of the spacious anticuboctahedral-1 ligand array.

Wavelength-Dependent Photochemistry of M₃(CO)₁₂: Fragmentation vs. CO Loss. Results presented here and elsewhere²³ indicate that the rate of internal conversion in $M_3(CO)_{12}$ complexes (M = Fe, Ru, Os) is only competitive with the rate of reaction from upper excited states. In accord with recent findings of Ford and co-workers, 23 the present study shows that longer wavelength ($\lambda > 420$ nm) excitation of Ru₃(CO)₁₂ in the presence of CO, C₂H₄, or PPh₃ leads almost exclusively to inefficient photofragmentation into mononuclear complexes at 298 K, while higher energy excitation leads to significant photosubstitution of the intact cluster by PPh₃. Similar behavior has been established²⁴ for Os₃(CO)₁₂. While net photofragmentation dominates the photochemistry of Fe₃(CO)₁₂ in fluid solution at 298 K,³ even in the absence of added ligands, 17 we find that irradiation of Fe₃(CO)₁₂ in PPh₃-containing alkane solutions at 195 K yields both substitution (Fe₃(CO)₁₁(PPh₃)) and fragmentation (Fe(CO)_{5-n}(PPh₃)_n

⁽⁴⁸⁾ Lo, F. Y.-K.; Longoni, G.; Chini, P.; Lower, L. D.; Dahl, L. F. J. Am. Chem. Soc. 1980, 102, 7691-7701.

⁽⁴⁹⁾ Sappa, E.; Milone, L. J. Organomet. Chem. 1973, 61, 383-388.
(50) Abel, E. W.; Blackmore, T.; Whittey, R. J. Inorg. Nucl. Chem. Lett. 1974, 10, 941-944.

⁽⁵¹⁾ Roland, E.; Vahrenkamp. H. Angew. Chem., Int. Ed. Engl. 1981, 20,

⁽⁵²⁾ Moss, J. R.; Graham, W. A. G. J. Organomet. Chem. 1970, 23,

⁽⁵³⁾ Bhattacharyza, A. A.; Nagel, C. C.; Shore, S. G. Organometallics 1983, 2, 1187-1193.

⁽⁵⁴⁾ Nagel, C. C.; Bricker, J. C.; Alway, D. G.; Shore, S. G. J. Organomet. Chem. 1981, 219, C9-C12.

⁽⁵⁵⁾ Benfield, R. E.; Johnson, B. F. G. Transition Met. Chem. 1981, 6, 131. Benfield, R. E.; Johnson, B. F. G. J. Chem. Soc., Dalton Trans. 1980,

⁽⁵⁶⁾ Churchill, M. R.; DeBoer, B. G. Inorg. Chem. 1977, 16, 878-884.

⁽⁵⁷⁾ Bentsen, J. G.; Wrighton, M. S., unpublished results.
(58) (a) Mason, R.; Rae, A. l. M. J. Chem. Soc. A 1968, 778-779.
(b) Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg. Chem. 1977, 16, 2655-2659

⁽⁵⁹⁾ Bruce, M. 1.; Matisons, J. G.; Wallis, R. C.; Patrick, J. M.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1983, 2365-2373.

(n=0-2)) products. Here again, photosubstitution is more important for higher energy excitation. Photosubstitution efficiencies in fluid solution support a wavelength dependent loss of CO from $M_3(CO)_{12}$ complexes. Photofragmentation is completely suppressed in organic glasses at 90 K, thus enabling accumulation of photogenerated $M_3(CO)_{11}$, according to eq 1, upon near-UV promotion of a higher energy electronic transition(s).

Excitation into the overlapping second and third electronic absorptions for $Ru_3(CO)_{12}$ or the third electronic absorption for $Os_3(CO)_{12}^{24}$ and $Fe_3(CO)_{12}$ gives (i) dissociative loss of CO in an alkane glass at 90 K, (ii) dissociative substitution of L for CO (L = ^{13}CO , C_2H_4 , C_5H_{10} , N_2 (Ru, Os only), and 2-MeTHF) at 90 K, and (iii) wavelength-dependent substitution of PPh₃ for CO in fluid solution. In accord with the nature of the third allowed electronic transition ($\sigma^{*\prime} \rightarrow \sigma^*$, $d_{x^2-y^2} \rightarrow d_{xy}$)⁴¹ the selective photochemical extrusion of a nonstatistical excess of ^{12}CO from axial- ^{13}CO -Os₃(CO)₁₁(^{13}CO) and the kinetic trapping of equatorially substituted $Ru_3(CO)_{11}(2$ -MeTHF) suggest preferential loss of equatorial CO from Os₃(CO)₁₂ and $Ru_3(CO)_{12}$.

Spectroscopic investigations 19 indicate that the second allowed electronic transitions of Fe₃(CO)₁₂ and Os₃(CO)₁₂ and the first allowed electronic transition of Ru₃(CO)₁₂ approximate a $\sigma \rightarrow$ σ^* transition. Promotion of these transitions gives (i) associative substitution of strong π -acceptor/weak σ -donor ligands (^{13}CO , C₂H₄, and C₅H₁₀) but not N₂ or 2-MeTHF for CO at 90 K and (ii) inefficient photofragmentation in fluid solutions containing added ligands. The first allowed electronic transitions of Os₃-(CO)₁₂ and Fe₃(CO)₁₂ give no photochemistry at 90 K and yield both fragmentation and substitution for $Fe_3(CO)_{12}$ in fluid solution. This transition is predicted⁴¹ to exhibit characteristics intermediate between those of the $\sigma \to \sigma^*$ and $\sigma^{*\prime} \to \sigma^*$ states. Photochemistry associated with this transition for Os₃(CO)₁₂ is complicated at 298 K as a result of overlapping higher energy features which may, or may not, in fact be responsible for the inefficient long wavelength photofragmentation and photosubstitution behavior observed. ^{24,60}

Relatively low quantum yields for photofragmentation of M₃(CO)₁₂ complexes have been interpreted to indicate that excited states and intermediates formed along the primary photoreaction coordinate efficiently decay back to $M_3(CO)_{12}$. In the presence of excess CO, C₂H₄, or PPh₃, 298 K photoproduct distributions appear to be unaffected by the additional presence of added CCl₄ in the solution, suggesting that previously proposed diradical intermediates, 3.18 if formed, are too short lived to be trapped by this radical scavenger. For Ru, hard donor ligands have been shown to act as Stern-Volmer type quenchers^{21,22} of the photofragmentation chemistry in the presence of CO or PR₃, without significantly affecting 313-nm photosubstitution efficiencies.23 Such characteristics have lead to the proposed intermediacy²¹⁻²³ of a nonradical reactive isomer of Ru₃(CO)₁₂ (IV) which is capable of first-order return to the starting cluster or of capture by a 2e⁻ donor, eq 9. Competitive loss of L from IV' regenerates starting material.²³ Fragmentation rates for intermediate IV', inferred from flash photolysis kinetic data,23 were estimated to fall in the sequence CO, $C_2H_4 >>> PPh_3$.

For broad band irradiation of Ru₃(CO)₁₂, photofragmentation predominates in reactions of Ru₃(CO)₁₂ with CO, PPh₃, and alkenes at 298 K. At 90 K, photoisomerization of axial-¹³CO-Ru₃(CO)₁₁(¹³CO) to equatorial-¹³CO-Ru₃(CO)₁₁(¹³CO) is rapid compared to CO loss and may proceed via a similar intermediate (IV). For Os photosubstitution dominates at 298 K, and selective

loss of only ¹²CO is observed for irradiation of axial-¹³CO-Os₃-(CO)₁₁(¹³CO) at 90 K.

The present study shows that, in accord with the flash kinetic data at 298 K, the long wavelength photochemistry of Ru₃(CO)₁₂ at 195 K is dominated by the nature of the 2e-donor employed to scavenge intermediates. Long wavelength photoexcitation (\lambda > 420 nm) of Ru₃(CO)₁₂ at 195 K leads almost exclusively to photofragmentation $[Ru(CO)_4L + Ru_2(CO)_8L]$ in the presence of added L = CO or C_2H_4 but not in the presence of added PPh₃. Less efficient (by at least one order of magnitude for 436-nm excitation) photogeneration of CO-bridged intermediate X results for L = PPh₃; retention of the Ru₃ framework is suggested by the thermal reactions of intermediate X to form Ru₃(CO)₁₂ and $Ru_3(CO)_{11}(PPh_3)$. Importantly, the absence of $Ru(CO)_4(PPh_3)$ as an initial 195 K photoproduct (i) is consistent with previous proposals²² for the initial existence of a reactive Ru₂ intermediate and (ii) rules out other proposals²⁰ that the fragmentation of Ru₃(CO)₁₂ occurs via the simultaneous cleavage of two metalmetal bonds to form Ru(CO)₄ and Ru₂(CO)₈. Photofragmentation of Os₃(CO)₁₂^{24,60} is also more efficient in solutions containing C₂H₄ vs. PPh₃. While the activation barrier for conversion of IV' to Ru(CO)₄L and Ru₂(CO)₈L may be higher for a stronger σdonor (weaker π -acceptor) ligand owing to the electron-withdrawing character of the bridging CO of this intermediate,²³ structural variations in IV' may also be important. As with $M_3(CO)_{11}L$ complexes, strong π -acceptors may prefer equatorial coordination while weak π -acceptors may prefer axial coordination in IV'. While the Ru₃(CO)₁₂ complex fragments at 195 K to yield Ru₂(CO)₈(C₂H₄) and Ru(CO)₄(C₂H₄) in C₂H₄-containing solutions at 195 K, the products obtained in the long wavelength photofragmentation of Fe₃(CO)₁₂ at 298 K would be consistent with the initial formation of Fe(CO)₅ and Fe₂(CO)₇(L)₂ or, alternatively, Fe₂(CO)₉ and Fe(CO)₃(L)₂; Fe₂(CO)₉ is known to react with PR_3 (R = alkyl) to yield $Fe(CO)_5$, $Fe(CO)_4(PR_3)$, and Fe(CO)₃(PR₃)₂ complexes.⁶¹ The difference in the long wavelength photofragmentation products for Fe₃(CO)₁₂ and Ru₃(CO)₁₂ may be associated with the different electronic nature of the lowest energy absorptions for these two complexes.

The wavelength dependent bimolecular photoreaction efficiencies at 90 K suggest the dominant intermediacy of Ru₃(CO)₁₁ in the photogeneration of Ru₃(CO)₁₁(N₂) and Ru₃(CO)₁₁(2-MeTHF) complexes. However, the efficiencies suggest involvement of a second, transient intermediate or excited state responsible for the longer wavelength photogeneration of $Ru_3(CO)_{12-n}(^{13}CO)_n$ and $Ru_3(CO)_{11}(\eta^2$ -alkene) complexes. These results suggest the long wavelength photogeneration of a reactive isomer of Ru₃-(CO)₁₂, perhaps IV, which reacts with L to form an Ru₃(CO)₁₂L adduct, perhaps IV', at 90 K. Thermodynamic and/or cage effects suppress fragmentation of IV' in favor of competing ligand loss (CO or L) to yield the substitution product or to regenerate Ru₃(CO)₁₂, respectively. The entering group dependence would again reflect the notion that net reaction from IV' is related to the ability of L to stabilize IV' through π -backbonding. Competitive accumulation of axially vacant Ru₃(CO)₁₁ accompanies higher energy excitation. For Fe₃(CO)₁₂ and Os₃(CO)₁₂,²⁴ ligand dependent associative photosubstitution is associated with the second allowed electronic transition while higher energy excitation yields M₃(CO)₁₁.

Implications for Catalysis. Research in this group and elsewhere has previously established that near-UV photolysis of Fe-(CO)₅^{5,62-64} or low energy visible light excitation of Fe₃(CO)₁₂^{3,5} or Ru₃(CO)₁₂^{3,4} in the presence of alkenes yields extraordinarily active alkene isomerization catalysts. Quantum yields for photocatalyzed isomerization of 1-pentene to *cis*- and *trans*-2-pentene

⁽⁶¹⁾ Braterman, P. S.; Wallace, W. J. J. Organomet. Chem. 1971, 30, C17-C18.

⁽⁶²⁾ Schroeder, M. A.; Wrighton, M. S. J. Am. Chem. Soc. 1976, 98, 551-558, Schroeder, M. A.; Wrighton, M. S. J. Organomet. Chem. 1977, 128, 345-358

⁽⁶³⁾ Chase, D. B.; Weigert, F. J. J. Am. Chem. Soc. 1981, 103, 977-978.
(64) Whetten, R. L.; Fu, K.-J.; Grant, E. R. J. Am. Chem. Soc. 1982, 104, 4270-4272.

have been reported to exceed unity by two or three orders of magnitude at ambient temperature. These and other findings^{20,29} are consistent with the notion of thermal catalytic processes subsequent to the photochemical generation of the actual catalyst. By using Fe(CO)₅ as the precursor, a carbonyl-bridged diiron complex⁶⁵ and, alternatively, a mononuclear tricarbonyl iron unit^{62,64} have been proposed to carry the catalytic cycle. Ironcarbonyl intermediates have been observed at subambient temperature, including HFe(CO)₃(η^3 -C₃H₅) from photolysis of Fe-(CO)₄(C₃H₆) in a rigid alkane glass at 77 K.⁶⁶ In neat 1-pentene, warmup of photogenerated HFe(CO)₃(η^3 -C₅H₉) (from Fe(CO)₅ and 1-pentene at 77 K) results in significant catalytic isomerization of 1-pentene above 260 K in the dark. Eventual regeneration of Fe(CO)₄(alkene) is accompanied by decline of catalytic activity. $Fe(CO)_3(\eta^3$ -allyl) radical species, also detected in 1-3% yield as photoproducts of Fe(CO)₅ and olefins, have been implicated in catalytic reactions of olefins.⁶⁷

In C₂H₄-saturated alkane solution, visible irradiation of Fe₃-(CO)₁₂ yields I equiv each of Fe(CO)₅, Fe(CO)₄(C₂H₄), and $Fe(CO)_3(C_2H_4)_2$. Addition of deoxygenated 1-pentene to solutions of $Fe(CO)_3(C_2H_4)_2$, but not $Fe(CO)_4(C_2H_4)$ or $Fe(CO)_5$, results in rapid catalytic isomerization at 298 K to a mixture of 2pentenes.²⁹ Estimated turnover rates for the long wavelength photocatalysis (700-900 min⁻¹) by Fe₃(CO)₁₂⁵ are in close agreement with the turnover rates associated with the thermal catalysis by 1 equiv of $Fe(CO)_3(C_2H_4)_2$ at 298 K (600 min⁻¹). While catalytically active mononuclear species have been implicated based on good chemical yields of mononuclear photoproducts during long wavelength photoexcitation of M₃(CO)₁₂ (M = Fe, Ru) in alkene-, CO-, or phosphine-containing solutions, present results provide the first direct evidence that a mononuclear tricarbonyl unit, present as a substitutionally labile Fe(CO)₃- $(n^2$ -alkene), complex, carries the catalytic cycle for alkene isomerization, photocatalyzed by Fe₃(CO)₁₂. Higher turnover rates have been estimated from near-UV excitation of Fe(CO)5,5 suggesting involvement of additional catalytic species. Mononuclear dicarbonyl species may be important as suggested by the

catalytic activity found when 1-pentene is added to a solution of $Ru(CO)_2(C_2H_4)_3$. Importantly, near-UV irradiation of Fe(CO) $_3(C_2H_4)_2$ in C_2H_4 -containing alkane glasses at 90 K rapidly yields $Fe(CO)_2(C_2H_4)_3$ and eventually a monocarbonyl species formulated as $Fe(CO)(C_2H_4)_4$; these complexes rapidly back react with liberated CO at higher temperatures.²⁹

While long wavelength ($\lambda > 420$ -nm) photoexcitation of Ru₃(CO)₁₂ in C₂H₄-saturated alkane solutions at 298 K yields catalytically inactive Ru(CO)₄(C₂H₄) according to eq 10, similar

$$Ru_{3}(CO)_{12} \xrightarrow{h_{\nu} (\lambda > 420 \text{ nm}), C_{2}H_{4}} 3Ru(CO)_{4}(C_{2}H_{4}) \quad (10)$$

irradiation in the presence of 1-pentene yields photocatalytic isomerization to a mixture of 2-pentenes. At 195 K, Ru-(CO)₄(C₂H₄) is the only observed mononuclear product, even after significant fragmentation of photogenerated Ru₂(CO)₈(C₂H₄) has occurred. Under these conditions Ru(CO)₅ and Ru(CO)₃(C₂H₄)₂ are stable but are not accumulated. Photogenerated Ru(CO)₅ and Ru(CO)₃(C₂H₄)₂, if formed at 298 K, would not accumulate in C₂H₄-saturated solutions due to their facile conversion to Ru(CO)₄(C₂H₄) according to eq 11 and 12. Future investigations should address the possibility that Ru₂(CO)₈(alkene) or Ru₃-(CO)₁₂(alkene) intermediates fragment differently when the alkene is more bulky and/or contains allylic hydrogens.

$$Ru(CO)_5 + C_2H_4 \rightarrow Ru(CO)_4(C_2H_4) + CO$$
 (11)

$$Ru(CO)_3(C_2H_4)_2 + CO \rightarrow Ru(CO)_4(C_2H_4) + C_2H_4$$
 (12)

Acknowledgment. This work was supported by the National Science Foundation.

Supplementary Material Available: IR and UV-vis spectral data for relevant complexes to supplement Table I; figures showing IR spectral changes associated with preparing $Ru_3(CO)_{11}(N_2)$ and axial- $^{13}CO-Ru_3(CO)_{11}(^{13}CO)$ from photogenerated $Ru_3-(CO)_{11}$ at <110 K; figure showing IR spectral changes for the long wavelength photoconversion of $Ru_3(CO)_{12}$ to a mixture of $Ru(CO)_4(C_2H_4)$ and $Ru_2(CO)_8(C_2H_4)$ at 195 K; figure showing IR spectral changes for the long wavelength photoconversion of $Fe_3(CO)_{12}$ to a mixture of $Fe(CO)_5$, $Fe(CO)_4(C_2H_4)$, and $Fe(C-O)_3(C_2H_4)_2$ at 298 K (10 pages). Ordering information is given on any current masthead page.

^{(65) (}a) Swartz, G. L.; Clark, R. J. Inorg. Chem. 1980, 19, 3191-3195.
(66) Mitchener, J. C.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105, 1065-1067.

⁽⁶⁷⁾ Krusic, P. J.; Briere, R.; Rey, P. Organometallics 1985, 4, 801-803.